Skip to main content

The Role of Organic Osmolytes in the Regulation of Mammalian Cell Volume

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 9))

Abstract

The reasons why mammalian cells require mechanisms enabling them to accurately regulate their volumes (water content), and the ways in which they accomplish this under normal physiological conditions and in response to a wide variety of internal and external stimuli have been comprehensively reviewed over the past two decades (e.g. Hoffmann 1977; Macknight and Leaf 1977; Macknight 1984a; Hoffmann and Simonsen 1989). It is generally agreed that cell membranes are unable to sustain significant osmotic gradients, and that alterations in extracellular osmolality will rapidly be reflected in the osmolality of intracellular fluids, with potentially deleterious changes in cell volume. Cell volumes can also be influenced by factors not immediately related to their external osmotic environment (Macknight 1984b). Thus, for example, cells in the mammalian brain are known to swell under the influence of a variety of non-osmotic stimuli (for references, see Wade et al. 1988). Cells in the kidney, the other organ with which the present chapter is primarily concerned, swell during metabolic blockade (Pine et al. 1979; Linshaw 1980) or ischaemia (Frega et al. 1976): their volumes can also be influenced by the activity of the Na pump and by extracellular oncotic pressure (Linshaw and Stapleton 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal HC, Davison AN, Kaczmarek LK (1971) Subcellular distribution of taurine and cysteinesulphin-ate decarboxylase in developing rat brain. Biochem J 122:759–763

    PubMed  CAS  Google Scholar 

  • Arieff AI, Guisado R (1976) Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int 10:104–116

    PubMed  CAS  Google Scholar 

  • Arieff AI, Massry SG, Barrientos A, Kleeman C (1973) Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int 4:177–187

    PubMed  CAS  Google Scholar 

  • Arieff AI, Guisado R, Lazarowitz VC (1977) Pathophysiology of hyperosmolar states. In: Andreoli TE, Grantham JJ, Rector FC (eds) Disturbances in body fluid osmolality. Am Physiol Soc Bethesda Md, pp 227–250

    Google Scholar 

  • Atherton JC, Green R, Thomas S (1970) Effects of 0.9% saline infusion on urinary and renal tissue composition in the hydropaenic, normal, and hydrated conscious rat. J Physiol 210:45–71

    PubMed  CAS  Google Scholar 

  • Atlas M, Bahl JJ, Roeske W, Bressler R (1984) In vitro osmoregulation of taurine in fetal mouse hearts. J Mol Cell Cardiol 16:311–320

    PubMed  CAS  Google Scholar 

  • Bagnasco S, Balaban R, Fales HM, Yang W-M, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261:5872–5877

    PubMed  CAS  Google Scholar 

  • Bagnasco SM, Uchida S, Balaban RS, Kador PF, Burg MB (1987) Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci USA 84:1718–1720

    PubMed  CAS  Google Scholar 

  • Bagnasco SM, Murphy HR, Bedford JJ, Burg MB (1988) Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux. Am J Physiol 254:C788-C792

    PubMed  CAS  Google Scholar 

  • Balaban RS, Knepper MA (1983) Nitrogen-14 nuclear magnetic resonance spectroscopy of mammalian tissues. Am J Physiol 245:C439-C444

    PubMed  CAS  Google Scholar 

  • Baldwin JJ, Cornatzer WE (1968) Rat kidney glycerylphosphorylcholine diesterase. Biochim Biophys Acta 164:195–204

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P (1988) Cell volume regulation in the nervous system. Renal Physiol Biochem 3–5:142–157

    Google Scholar 

  • Beck F, Bauer R, Bauer U, Mason J, Dorge A, Rick R, Thurau K (1980) Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int 17:756–763

    PubMed  CAS  Google Scholar 

  • Beck F, Dorge A, Rick R, Thurau K (1984) Intra- and extracellular element concentrations of rat renal papilla in antidiuresis. Kidney Int 25:397–403

    PubMed  CAS  Google Scholar 

  • Beck F, Dorge A, Rick R, Thurau K (1985) Osmoregulation of renal papillary cells. Pflügers Arch 405 (Suppl 1): S28-S32

    PubMed  Google Scholar 

  • Beck FX, Dorge A, Thurau K (1988) Cellular osmoregulation in renal medulla. Renal Physiol Biochem 3–5:174–186

    Google Scholar 

  • Beck FX, Dorge A, Ring T, Sauer M (1989) Element composition of tubule cells in the inner stripe of the renal outer medulla. Min Elec Metab 15:144–149

    CAS  Google Scholar 

  • Bedford JJ, Bagnasco SM, Kador PF, Harris HW, Burg MB (1987) Characterization and purification of a mammalian osmoregulatory protein, aldose reductase, induced in renal medullary cells by high extracellular NaCl. J Biol Chem 262:14255–14259

    PubMed  CAS  Google Scholar 

  • Bennett JP, Logan WJ, Snyder SH (1973) Amino acids as central nervous transmitters: the influence of ions, amino acid analogues, and ontogeny on transport systems for L-glutamic and L-aspartic acids and glycine into central nervous system synaptosomes of the rat. J Neurochem 21:1533–1550

    PubMed  CAS  Google Scholar 

  • Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of a-aminoisobutyric acid across brain capillary and cellular membranes. J Cerebral Blood Flow and Metabolism 3:8–32

    CAS  Google Scholar 

  • Blumenfeld J, Hebert S, Heilig CW, Balschi JA, Stromski ME, Gullans SR (1989) Organic osmolytes in inner medulla of the Brattleboro rat: effects of ADH and dehydration. Am J Physiol 256:F916-F922

    PubMed  CAS  Google Scholar 

  • Bondareff W (1967) An intercellular substance in rat cerebral cortex: submicroscopic distribution of ruthenium red. Anat Rec 157:527–536

    CAS  Google Scholar 

  • Bondy CA, Lightman SL, Lightman SL (1989) Developmental and physiological regulation of aldose reductase mRNA expression in renal medulla. Molec Endocrinol 3:1409–1416

    CAS  Google Scholar 

  • Borg J, Balcar VJ, Mark J, Mandel P (1979) Characterization of taurine uptake by neuronal and glial cells in culture. J Neurochem 32:1801–1805

    PubMed  CAS  Google Scholar 

  • Boron WF, Sackin H (1983) Measurement of intracellular ionic composition and activities in renal tubules. Annu Rev Physiol 45:483–496

    PubMed  CAS  Google Scholar 

  • Brookes N (1988) Neutral amino acid transport in astrocytes: characterization of Na+-dependent and Na+-independent components of a-aminoisobutyric acid uptake. J Neurochem 51:1913–1918

    PubMed  CAS  Google Scholar 

  • Bulger RE (1987) Composition of renal medullary tissue. Kidney Int 31:556–561

    PubMed  CAS  Google Scholar 

  • Chambers ST, Kunin CM (1985) The osmoprotective properties of urine for bacteria: the protective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars and urea. J Infect Dis 152:1308–1315

    PubMed  CAS  Google Scholar 

  • Chambers ST, Kunin CM (1987a) Isolation of glycine betaine and proline betaine from human urine. J Clin Invest 79:731–737

    PubMed  CAS  Google Scholar 

  • Chambers ST, Kunin CM (1987b) Osmoprotective activity for Escherichia coli in renal inner medulla and urine. Correlation of glycine and betaines and sorbitol with response to osmotic loads. J Clin Invest 80:1255–1260

    PubMed  CAS  Google Scholar 

  • Chan PH, Fishman RA (1979) Elevation of rat brain amino acids, ammonia and idiogenic osmoles induced by hyperosmolality. Brain Res 161:293–301

    PubMed  CAS  Google Scholar 

  • Chan PH, Pollack E, Fishman RA (1981) Differential effects of hypertonic mannitol and glycerol on rat brain metabolism and amino acids. Brain Res 225:143–153

    PubMed  CAS  Google Scholar 

  • Chauncey B, Leite MV, Goldstein L (1988) Renal sorbitol accumulation and associated enzyme activities in diabetes. Enzyme 39:231–234

    PubMed  CAS  Google Scholar 

  • Chesney RW (1987) New functions for an old molecule. Pediat Res 22:755–759

    PubMed  CAS  Google Scholar 

  • Clampitt RB, Hart RJ (1978) The tissue activities of some diagnostic enzymes in ten mammalian species. J Comp Pathol 88:607–621

    PubMed  CAS  Google Scholar 

  • Clements RS Jr, Reynertson R (1977) Myo-inositol metabolism in diabetes mellitus: effect of insulin treatment. Diabetes 26:215–221

    PubMed  CAS  Google Scholar 

  • Cohen MAH, Hruska KA, Daughaday WH (1982) Free myo-inositol in canine kidneys: selective concentration in the renal medulla. Proc Soc Exp Biol Med 169:380–385

    PubMed  CAS  Google Scholar 

  • Cowley BD Jr, Ferraris JD, Carper D, Burg MB (1990) In vivo osmotic regulation of aldose reductase mRNA, protein, and sorbitol content in rat renal medulla. Am J Physiol 258:F154-F161

    PubMed  CAS  Google Scholar 

  • Cserr HF, DePasquale M, Patlak CS (1987) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253:F522-F529

    PubMed  CAS  Google Scholar 

  • Davison JM (1985) The physiology of the renal tract in pregnancy. Clin Obstet Gynecol 28:257–265

    PubMed  CAS  Google Scholar 

  • Davison JM, Vallotton MB, Lindheim er MD (1981) Plasma osmolality and urinary concentration and dilution during and after pregnancy: evidence that lateral recumbency inhibits maximal urinary concentrating ability. Br J Obstet Gynaecol 88:472–479

    PubMed  CAS  Google Scholar 

  • Dawson RMC (1955) The role of glycerylphosphorylcholine and glycerylphosphorylethanolamine in liver phospholipid metabolism. Biochem J 59:5–8

    PubMed  CAS  Google Scholar 

  • Dawson RMC, Freinkel N (1961) The distribution of free myoinositol in mammalian tissues, including some observations on the lactating rat. Biochem J 78:606–610

    PubMed  CAS  Google Scholar 

  • Dawson WD, Smith TC (1987) Energetics of Na+-dependent amino acid co-transport in Ehrlich ascites tumour cells. Biochim Biophys Acta 897:5–13

    PubMed  CAS  Google Scholar 

  • Dehler EA, Lajtha A (1988) Amino acid uptake in synaptosomal preparations. In: Rakic L, Begley DJ, Davson H, Zlokovic BV (eds) Peptide and amino acid transport mechanisms in the central nervous system. Stockton, New York, pp 195–208

    Google Scholar 

  • Eisenberg F (1967) D-myo-inositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J Biol Chem 242:1375–1382

    PubMed  CAS  Google Scholar 

  • Fenstermacher JD (1984) Volume regulation of the central nervous system. In: Staub NC, Taylor AE (eds) Edema. Raven, New York, pp 383–404

    Google Scholar 

  • Finberg L (1973) Hypernatremic (hypertonic) dehydration in infants. New Engl J Med 289:196–198

    PubMed  CAS  Google Scholar 

  • Fishman RA, Reiner M, Chan PH (1977) Metabolic changes associated with iso-osmotic regulation in brain cortex slices. J Neurochem 28–1061-1067

    PubMed  CAS  Google Scholar 

  • Frega NS, DiBona DR, Geurtler B, Leaf A (1976) Ischemic renal injury. Kidney Int 10:S17-S25

    Google Scholar 

  • Garcia-Perez A, Martin B, Murphy HR, Uchida S, Murer H, Cowley BD, Handler JS, Burg MB (1989) Molecular cloning of cDNA coding for kidney aldose reductase. Regulation of specific mRNA accumulation by NaCl-mediated osmotic stress. J Biol Chem 246:16815–16821

    Google Scholar 

  • Gilles R (1979) Intracellular organic osmotic effectors. In: Gilles R (ed) Mechanisms of osmoregulation in animals. John Wiley & Sons, Chichester UK, pp 111–153

    Google Scholar 

  • Gilles R, Duchene C, Lambert I (1983) Effect of osmotic shocks on rabbit kidney cortex slices. Am J Physiol 244:F696-F705

    PubMed  CAS  Google Scholar 

  • Grasdalen H, Belton PS, Pry or JS, Rich GT (1987) Quantitative proton magnetic resonance of plasma from uraemic patients during dialysis. Magnet Res Chem 25:811–816

    CAS  Google Scholar 

  • Greene DA, Lattimer SA, Sima AAF (1987) Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. New Engl J Med 316:599–605

    PubMed  CAS  Google Scholar 

  • Grossman EB, Hebert SC (1989) Renal inner medullary choline dehydrogenase activity: characterization and modulation. Am J Physiol 256:F107-F112

    PubMed  CAS  Google Scholar 

  • Grunewald RW, Kinne RKH (1989) Sorbitol metabolism in inner medullary collecting duct cells of diabetic rats. Pflügers Arch 414:346–350220

    PubMed  CAS  Google Scholar 

  • R.O. Law and M.B. Burg Guisado R, Arieff AI, Massry SG (1974) Effects of glycerol infusions on brain water and electrolytes. Am J Physiol 227:865–872

    Google Scholar 

  • Gullans SR, Blumenfeld JD, Baischi JA, Kaleta M, Brenner RM, Heilig CW, Hebert SC (1988) Accumula tion of major organic osmolytes in rat renal inner medulla in dehydration. Am J Physiol 255:F626-F634

    PubMed  CAS  Google Scholar 

  • Hammerman M, Sacktor B, Daughaday W (1980) myoinositol transport in renal brush border vesicles and its inhibition by D-glucose. Am J Physiol 239:F113-F120

    Google Scholar 

  • Hammerstad JP, Cutler RWP (1972) Sodium ion movements and the spontaneous and electrically stimulated release of [3H]GABA and [14C]glutamic acid from rat cortical slices. Brain Res 47:401–413

    CAS  Google Scholar 

  • Haubrich DR, Wang PFL, Wedeking PW (1975) Distribution and metabolism of intravenously administered choline[methyl-3HJ and synthesis in vivo of acetocholine in various tissues of guinea pigs. J Pharm Exp Ther 193:246–255

    CAS  Google Scholar 

  • Heilig CW, Gullans SR (1988) Accumulation of trimethylamines (TA) in renal inner medulla and brain in hypernatraemia (HNa). Kidney Int 33:194

    Google Scholar 

  • Heilig CW, Stromski ME, Blumenfeld JB, Lee JB, Gullans SR (1989a) Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol 257:F1108-F1116

    PubMed  CAS  Google Scholar 

  • Heilig CW, Stromski ME, Gullans SR (1989b) Methylamine and polyol responses to salt loading in renal I inner medulla. Am J Physiol 257:F1117-F1123

    PubMed  CAS  Google Scholar 

  • Heinz F, Schlegel F, Krause PH (1975) Enzymes of fructose metabolism in human kidney. Enzyme 19:85–92

    PubMed  CAS  Google Scholar 

  • Hennessey TL, Rubin H (1986) Development and inheritance of osmotic tolerance in a line of spontane ously transformed BALB/3T3 cells. Cancer Res 46:6041–6048

    PubMed  CAS  Google Scholar 

  • Hers HG (1960) Valdose-reductase. Biochim Biophys Acta 37:120–126

    PubMed  CAS  Google Scholar 

  • Hoffmann EK (1977) Control of cell volume. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, New York London, pp 285–332

    Google Scholar 

  • Hoffmann EK (1985) Regulatory volume decrease in Ehrlich ascites tumour cells: role of inorganic ions and amino compounds. Mol Physiol 8:167–184

    CAS  Google Scholar 

  • Hoffman EK (1987) Volume regulation in cultured cells. In: Gilles R, Kleinzeller A, Bolis L (eds) Cell volume control: fundamental and comparative aspects. Academic Press, New York London, pp 125–180

    Google Scholar 

  • Hoffmann EK, Hendil KB (1976) The role of amino acids and taurine in isosmotic intracellular regulation in Ehrlich ascites mouse tumour cells. J Comp Physiol 108:279–286

    CAS  Google Scholar 

  • Hoffmann EK, Lambert IH (1983) Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J Physiol 338:613–625

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69:315–382

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH, Simonsen LO (1988) Mechanisms in volume regulation in Ehrlich ascites tumor cells. Renal Physiol Biochem 3–5:221–247

    Google Scholar 

  • Holopainen I, Kontro P (1986) High-affinity uptake of taurine and ß-alanine in primary cultures of rat astrocytes. Neurochem Res 11:207–215

    PubMed  CAS  Google Scholar 

  • Holub BJ (1986) Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutrit 6:563–597

    CAS  Google Scholar 

  • Howard CF, Anderson L (1967) Metabolism of myo-inositol in animals. II. Complete catabolism of myo-inositol-14C by rat kidney slices. Arch Biochem Biophys 118:332–339

    PubMed  CAS  Google Scholar 

  • Hudson RL, Schultz SG (1988) Sodium-coupled glycine uptake by Ehrlich ascites tumour cells results in an increase in cell volume and plasma membrane channel activities. Proc Natl Acad Sci USA 85:279–283

    PubMed  CAS  Google Scholar 

  • Hutton JC, Schofield PJ, Williams JF, Hollows FC (1975) The localization of sorbitol pathway activity in the rat renal cortex and its relationship to the pathogenesis of the renal complications of diabetes. Aust J Biol Med Sci 53:49–57

    CAS  Google Scholar 

  • Hytten FE, Cheyne GA (1972) The aminoaciduria of pregnancy. J Obstet Gynaecol Br Comm 79:424–432

    CAS  Google Scholar 

  • Illowsky BP, Laureno R (1987) Encephalopathy and myelinolysis after rapid correction of hyponatraemia. J Brain 110:855–867

    Google Scholar 

  • Jacobsen JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511

    PubMed  CAS  Google Scholar 

  • Jamison RL, Kriz W (1982) Urinary concentrating mechanism: structure and function. Oxford University Press, Oxford g Jorgensen KE, Sheikh MI (1987) Renal transport of neutral amino acids. Biochem J 248:533–538

    Google Scholar 

  • Katzman R, Leiderman PH (1953) Brain potassium exchange in normal adult and immature rats. Am J Physiol 175:263–270

    PubMed  CAS  Google Scholar 

  • Kawashima Y, Bell RM (1987) Assembly of the endoplasmic reticulum phospholipid bilayer. Transporters for phosphatidylcholine metabolites. J Biol Chem 262:16495–16502

    PubMed  CAS  Google Scholar 

  • Kimelberg KH, Goderie SK, Higman S, Pang S, Cole R, Parsons DF (1990) Volume changes of astrocytes in vitro as a model for pathological astrocytic swelling. In: Levi G (ed) Differentiation and functions of glial cells. Neurology and Neurobiology 55, pp 335–348

    Google Scholar 

  • Kleeman CR, Davson H, Levin E (1962) Urea transport in the central nervous system. Am J Physiol 203:739–747

    PubMed  CAS  Google Scholar 

  • Knopf K, Sturman JA, Armstrong M, Hayes KC (1978) Taurine: an essential nutrient for the cat. J Nutrit 108:773–778

    PubMed  CAS  Google Scholar 

  • Kowluru R, Bitensky MW, Kowluru A, Dembo M, Keaton PA, Buican T (1989) Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effects on filterability and implications for microangiopathy. Proc Natl Acad Sci USA 86:3327–3331

    PubMed  CAS  Google Scholar 

  • Lajtha A, Sershen H (1975) Inhibition of amino acid uptake by the absence of Na+ in slices of brain. J Neurochem 24:667–672

    PubMed  CAS  Google Scholar 

  • Lambert IH (1985) Taurine transport in Ehrlich ascites tumour cells. Specificity and chloride dependence. Mol Physiol 7:323–332

    CAS  Google Scholar 

  • Lambert IH, Hoffmann EK (1982) Amino acid metabolism and protein turnover under different osmotic conditions in Ehrlich ascites tumour cells. Mol Physiol 2:274–286

    Google Scholar 

  • Larsson OM, Griffiths R, Allen IC, Schousboe A (1986) Mutual inhibition kinetic analysis of y-aminobuty- ric acid, taurine, and 8-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and B-alanine carriers in both cell types. J Neurochem 47:426–432

    PubMed  CAS  Google Scholar 

  • Law RO (1982) Techniques and applications of extracellular space determination in mammalian tissues. Experientia 38:411–421

    PubMed  CAS  Google Scholar 

  • Law RO (1984) Characteristics of ionic binding by rat renal tissue in vitro. J Physiol 353:67–80

    PubMed  CAS  Google Scholar 

  • Law RO (1987) The volume and ionic composition of cells in incubated slices of rat renal cortex, medulla and papilla. Biochim Biophys Acta 931:276–285

    PubMed  CAS  Google Scholar 

  • Law RO (1988) An inwardly-directed sodium-amino acid cotransporter influences steady-state cell volume in slices of rat renal papilla incubated in hyperosmotic media. Pfltigers Arch 413:43–50

    CAS  Google Scholar 

  • Law RO (1989) The effects of pregnancy on the contents of water, taurine, and total amino nitrogen in rat cerebral cortex. J Neurochem 53:300–302

    PubMed  CAS  Google Scholar 

  • Law RO, Turner DPJ (1987) Are ninhydrin-positive substances volume-regulatory osmolytes in rat renal papillary cells? J Physiol 386:45–61

    PubMed  CAS  Google Scholar 

  • Lehman A, Hansson E (1987) Amino acid content in astroglial primary cultures from different brain regions during cultivation. Neurochem Res 12:797–800

    Google Scholar 

  • Linshaw MA (1980) Effect of metabolic inhibitors on renal tubule cell volume. Am J Physiol 239:F571- F577

    Google Scholar 

  • Linshaw MA, Stapleton FB (1978) Effect of ouabain and colloid osmotic pressure on renal tubule cell volume. Am J Physiol 235:F480-F491

    PubMed  CAS  Google Scholar 

  • Lockwood AH (1975) Acute and chronic hyperosmolality. Arch Neurol 32:62–64

    PubMed  CAS  Google Scholar 

  • Lockwood AH (1980) Adaptation to hyperosmolality in the rat. Brain Res 200:216–219

    PubMed  CAS  Google Scholar 

  • Lohr JW, Grantham JJ (1986) Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest 78:1165–1172

    PubMed  CAS  Google Scholar 

  • Lohr JW, McReynolds J, Grimaldi T, Acara M (1988) Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain and kidney. Life Sci 43:271–276

    PubMed  CAS  Google Scholar 

  • Ludvigson MA, Sorenson RL (1980) Immunohistochemical localization of aldose reductase. II. Rat eye and kidney. Diabetes 29:450–459

    Google Scholar 

  • Luttrell CN, Finberg L (1958) Clinical, pathological and biochemical features of experimental hypernatre-mic encephalopathy. Trans Am Neurol Assoc 83:127–132

    Google Scholar 

  • Lynch AM, McGivan JD (1987) Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney. Biochim Biophys Acta 899:176–184

    PubMed  CAS  Google Scholar 

  • Macknight ADC (1983) Volume regulation in mammalian kidney cells. Mol Physiol 4:17–31

    Google Scholar 

  • Macknight ADC (1984a) Cellular volume under physiological conditions. In: Staub NC, Taylor AE (eds) Edema. Raven, New York, pp 81–93

    Google Scholar 

  • Macknight ADC (1984b) Cellular response to injury. In: Staub NC, Taylor AE (eds) Edema. Raven, New York, pp 489–520

    Google Scholar 

  • Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57:510–573

    PubMed  CAS  Google Scholar 

  • Mandersloot JG, Roelofsen B, De Gier J (1978) Phosphatidylinositol as the endogenous activator of the (Na + K)-ATPase in microsomes of rabbit kidney. Biochim Biophys Acta 508:478–485

    PubMed  CAS  Google Scholar 

  • Mann PJG, Quastel JH (1937) CXVI. The oxidation of choline by rat liver. Biochem J 31:869–878

    PubMed  CAS  Google Scholar 

  • Martin JJ, Finkelstein JD (1981) Enzymatic determination of betaine in rat tissues. Anal Biochem 111:72–76

    PubMed  CAS  Google Scholar 

  • Mayhan WG, Heistad DD (1985) Permeability of blood-brain barrier to various sized molecules. Am J Physiol 248:H712-H718

    PubMed  CAS  Google Scholar 

  • McDowell ME, Wolf AV, Steer A (1955) Osmotic volumes of distribution. Am J Physiol 180:545–558

    PubMed  CAS  Google Scholar 

  • Melton JE, Patlak CS, Pettigrew KD, Cserr HF (1987) Volume regulatory loss of Na, CI, and K from rat brain during acute hyponatraemia. Am J Physiol 252:F661-F669

    PubMed  CAS  Google Scholar 

  • Morgan T (1977) Effect of NaCl on composition and volume of cells in the rat papilla. Am J Physiol 232:F117-F122

    PubMed  CAS  Google Scholar 

  • Moriyama T, Garcia-Perez A, Burg MB (1990) Factors affecting the ratio of different organic osmolytes in renal medullary cells. Am J Physiol 259:F847-F858

    PubMed  CAS  Google Scholar 

  • Moriyama T, Garcia-Perez A, Burg MB (1989) Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J Biol Chem 264:16810–168414

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Burg MB (1989a) Osmoregulation of glycerophosphorylcholine content of mammalian renal cells. Am J Physiol 257:C795-C801

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Burg MB (1989b) Osmoregulatory fluxes of myo-inositol and betaine in renal cells. Am J Physiol 257:C964-C970

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Balaban RS, Burg MB (1988) Survey of osmolytes in renal cell lines. Am J Physiol 255:C181-C191

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Turner RJ, Burg MB (1989) Osmoregulatory changes in myo-inositol transport by renal cells. Proc Natl Acad Sci USA 86:6002–6006

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Turner RJ, Burg MB (1990) Osmoregulation of betaine transport in mammalian renal medullary cells. Am J Physiol 258:F1061-F1067

    PubMed  CAS  Google Scholar 

  • Nakazawa S, Quastel JH (1968) Effects of inorganic salts and of ouabain on some metabolic responses of rat cerebral cortex slices to cationic and electrical stimulations. Can J Biochem 46:355–362

    PubMed  CAS  Google Scholar 

  • Oates PJ, Goddu KJ (1987) A sorbitol gradient in rat renal medulla. Kidney Int 31:448

    Google Scholar 

  • Oja SS, Kontro P (1989) Release of endogenous taurine and y-aminobutyric acid from brain slices from the adult and developing mouse. J Neurochem 52:1018–1024

    PubMed  CAS  Google Scholar 

  • Orlowski M, Okonkwo PO, Green JP (1973) Activation of y-glutamyl transpeptidase by monovalent cations. FEBS Lett 31:237–240

    PubMed  CAS  Google Scholar 

  • Pasantes Morales H, Schousboe A (1988) Volume regulation in astrocytes: a role for taurine as osmo-effector. J Neurosci Res 20:505–509

    Google Scholar 

  • Pasantes Morales H, Schousboe A (1989) Release of taurine from astrocytes during potassium-evoked swelling. Glia 2:45–50

    Google Scholar 

  • Philibert TA, Rogers KL, Allen AJ, Dutton GR (1988) Dose-dependent, K+-stimulated efflux of endogenous taurine from primary astrocyte cultures is Ca2+-dependent. J Neurochem 51:122–126

    PubMed  CAS  Google Scholar 

  • Philippson C (1964) Der Gehalt an Glycerylphosphorylcholin und Glycerlyphosphorylathanolamin von Nierenmark und Nierenrinde hochreiner Wistarratten während forcierter Wasserdiurese und extrem langer Durst-Antidiurese. Pflügers Arch 280:30–37

    CAS  Google Scholar 

  • Pierce SK, Edwards SC, Mazzochi PH, Klingler J, Warren MK (1984) Proline betaine: a unique osmolyte in an extremely euryhaline osmoconformer. Biol Bull (Woods Hole) 167:495–500

    CAS  Google Scholar 

  • Pine MB, Rhodes D, Thorp K, Tsai Y (1979) Anion exchange and volume regulation during metabolic blockade of renal cortical slices. J Physiol 297:387–403

    PubMed  CAS  Google Scholar 

  • Pollock AS, Arieff AI (1980) Abnormalities of cell volume regulation and their functional consequences. Am J Physiol 239:F195-F205

    PubMed  CAS  Google Scholar 

  • Robinson RR, Owen EE, Schmidt-Nielsen B (1966) Intra-renal distribution of free amino acids in antidiuretic ruminants. Comp Biochem Physiol 19:187–195

    PubMed  CAS  Google Scholar 

  • Roy G, Sauvé R (1987) Effect of anisotonic media on volume, ion and amino-acid content and membrane potential of kidney cells (MDCK) in culture. J Membrane Biol 100:83–96

    Google Scholar 

  • Sands J, Terada Y, Bernard LM, Knepper MA (1989) Aldose reductase activities in microdissected rat nephron segments. Am J Physiol 256:F563-F569

    PubMed  CAS  Google Scholar 

  • Sato A, Ozawa K (1976) Hyperosmolarity-tolerant cells in kidneys. Yokohama Med Bull 27:51–61

    Google Scholar 

  • Saubermann AJ, Scheid VL, Dobyan DC, Bulger RE (1986) Simultaneous comparison of techniques for X-ray analysis of proximal tubular cells. Kidney Int 29:682–688

    PubMed  CAS  Google Scholar 

  • Scalera V, Corcelli A, Frassinato A, Storelli C (1987) Chloride dependence of the sodium-dependent glycine transport in pig kidney cortex brush-border membrane vesicles. Biochim Biophys Acta 903:1–10

    PubMed  CAS  Google Scholar 

  • Schachtschabel DO, Foley GE (1972) Serial cultivation of Ehrlich ascites tumor cells in hyperosmotic medium. Exp Cell Res 70:317–324

    PubMed  CAS  Google Scholar 

  • Schimassek H, Kohl D, Bucher T (1959) Glycerylphosphorylcholin, die Nierensubstanz “Ma-mark” von Ullrich. Biochem Z 331:87–97

    CAS  Google Scholar 

  • Schmidt-Nielsen B, O’Dell R, Osaki H (1961) Interdependence of urea and electrolytes in production of a concentrated urine. Am J Physiol 200:1125–1132

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen B, Patel Y, Patel P, Zell S (1973) Intra- and extracellular solute concentrations in the inner zone of a mammalian kidney. Mt Desert Is Biol Lab Bull 13:108–113

    Google Scholar 

  • Schmolke M, Beck FX, Guder WG (1989) Effect of antidiuretic hormone on renal organic osmolytes in Brattleboro rats. Am J Physiol 257:F732-F737

    PubMed  CAS  Google Scholar 

  • Schousboe A, Fosmark H, Sveneby G (1976) Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres. Brain Res 116:158–164

    PubMed  CAS  Google Scholar 

  • Seel M, Rorive G, Pequeux A, Gilles R (1980) Effect of hypo-osmotic shock on the volume and ion content of rat kidney cortex slices. Comp Biochem Physiol 65A:29–33

    Google Scholar 

  • Siebens A, Spring K (1989) A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. Am J Physiol 257:F937-F946

    PubMed  CAS  Google Scholar 

  • Silbernagl S (1988) The renal handling of amino acids and oligopeptides. Physiol Rev 68:911–1007

    PubMed  CAS  Google Scholar 

  • Somero GN (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 251:R197-R213

    PubMed  CAS  Google Scholar 

  • Spring K, Siebens AW (1988) Solute transport and epithelial cell volume regulation. Comp Biochem Physiol 90A:557–560

    CAS  Google Scholar 

  • Stahl B, Wiesinger H, Hamprecht B (1989) Characteristics of sorbitol uptake in rat glial primary cultures. J Neurochem 53:665–671

    PubMed  CAS  Google Scholar 

  • Sterns RH, Riggs JE, Schochet SS (1986) Osmotic demyelination syndrome following correction of hyponatremia. New Engl J Med 314:1535–1542

    PubMed  CAS  Google Scholar 

  • Sterns RH, Darbie JT, Herndon RM (1989) Brain dehydration and neurologic deterioration after rapid correction of hyponatraemia. Kidney Int 35:69–75

    PubMed  CAS  Google Scholar 

  • Stubblefield E, Mueller GC (1960) Effects of sodium chloride concentration on growth, biochemical composition, and metabolism of Hela cells. Cancer Res 20:1646–1655

    CAS  Google Scholar 

  • Sturman J A, Gaull GE (1976) Taurine in the brain and liver of the developing human and rhesus monkey. In: Huxtable R, Barbeau A (eds) Taurine. Raven, New York, pp 73–84

    Google Scholar 

  • Szabo MM, Roboz-Einstein E (1962) Active polysaccharides in the central nervous system. Arch Biochem Biophys 98:406–412

    CAS  Google Scholar 

  • Tani E, Ametani T (1971) Extracellular distribution of ruthenium red-positive substance in the cerebral cortex. J Ultrastruct Res 34:1–14

    PubMed  Google Scholar 

  • Thurston JH, Hauhart RE, Jones EM, Ater JL (1975) Effects of salt and water loading on carbohydrate and energy metabolism and levels of selected amino acids in the brains of young mice. J Neurochem 24:953–957

    PubMed  CAS  Google Scholar 

  • Thurston JH, Hauhart RE, Dirgo JA (1980) Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 26:1561–1568

    PubMed  CAS  Google Scholar 

  • Thurston JH, Hauhart RE, Naccarato EF (1981) Taurine: possible role in osmotic regulation of mammalian heart. Science 214:1373–1374

    PubMed  CAS  Google Scholar 

  • Thurston JH, Hauhart RE, Schultz DW (1983) Effect of chronic hypernatremic dehydration and rapid rehydration on brain carbohydrate, energy, and amino acid metabolism in weanling mice. J Neurochem 40:240–245

    PubMed  CAS  Google Scholar 

  • Thurston JH, Hauhart RE, Nelson JS (1987) Adaptive decreases in amino acids (taurine in particular), creatine, and electrolytes prevent cerebral edema in chronically hyponatremic mice: rapid correction (experimental model of central pontine myelinolysis) causes dehydration and shrinkage of brain. Metab Brain Dis 2:223–241

    PubMed  CAS  Google Scholar 

  • Thurston JH, Sherman WR, Hauhart RE, Kloepper RF (1989) Myo-inositol: a newly identified non-ni- trogenous osmoregulatory molecule in mammalian brain. Pediat Res 26:482–485

    PubMed  CAS  Google Scholar 

  • Trachtman H, Barbour R, Sturman JA, Finberg L (1988) Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration. Pediat Res 23:35–39

    PubMed  CAS  Google Scholar 

  • Uchida S, Green N, Coon H, Triche T, Mims S, Burg MB (1987) High NaCl induces stable changes in phenotype and karyotype of renal cells in culture. Am J Physiol 253:C230-C242

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Jarausch KH (1956) Untersuchungen zum Problem der Harnkonzentrierung und Harnverdünnung. Pflügers Arch 262:537–550

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Pehling G (1956) Über das Vorkommen von Phosphorverbindungen in verschiedenen Nierenabschnitten und Änderungen ihrer Konzentration in Abhängigkeit vom Diuresezustand. Pflügers Arch 262:551–561

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Pehling G (1959) Glycerylphosphorylcholinumstaz und Glycerylphosphorylcholindiesterase in der Säugetier-Niere. Biochem Z 331:98–102

    CAS  Google Scholar 

  • Van Gelder NM, Barbeau A (1985) The osmoregulatory function of taurine and glutamic acid. In: Oja SS, Ahtee L, Kontro P, Paasonen MK (eds) Taurine: biological actions and clinical perspectives. Liss, New York, pp 149–163

    Google Scholar 

  • Van Reeth O, Decaux G (1989) Rapid correction of hyponatraemia with urea may protect against brain damage in rats. Clin Sci 77:351–355

    PubMed  Google Scholar 

  • Verbalis JG, Drutarosky MD (1988) Adaptation to chronic hypoosmolality in rats. Kidney Int 34:351–360

    PubMed  CAS  Google Scholar 

  • Wade JV, Olson JP, Samson FE, Nelson SR, Pazdernik TL (1988) A possible role for taurine in osmoregulation within the brain. J Neurochem 51:740–745

    PubMed  CAS  Google Scholar 

  • Walz W, Allen AF (1987) Evaluation of the osmoregulatory function of taurine in brain cells. Exp Brain Res 68:290–298

    PubMed  CAS  Google Scholar 

  • Warfield A, Hwang SM, Segal S (1978) On the uptake of inositol by rat brain synaptosomes. J Neurochem 31:957–960

    PubMed  CAS  Google Scholar 

  • Welty JD, McBroom MJ, Appelt AW, Peterson MB, Read WO (1976) Effect of taurine on heart and brain electrolyte imbalances. In: Huxtable R, Barbeau A (eds) Taurine. Raven, New York, pp 155–163

    Google Scholar 

  • Wheatley DN (1974) Cell growth and division in hyperosmotic medium. Exp Cell Res 87:219–232

    PubMed  CAS  Google Scholar 

  • Wilken DR, McMacken ML, Rodriquez A (1970) Choline and betaine aldehyde oxidation by rat liver mitochondria. Biochim Biophys Acta 216:305–317

    PubMed  CAS  Google Scholar 

  • Wirthensohn G, Guder WG (1982) Studies on renal choline metabolism and phosphatidylcholine synthesis. In: Morel F (ed) Biochemistry of kidney functions. INSERM Symp 21. Elsevier Biomedical Press, Amsterdam, pp 119–128

    Google Scholar 

  • Wirthensohn G, Beck FX, Guder WG (1987) Role and regulation of glycerophosphorylcholine in rat renal papilla. Pflügers Arch 409:411–415

    PubMed  CAS  Google Scholar 

  • Wirthensohn G, Lefrank S, Guder WG (1989) Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol 256:F128-F135

    PubMed  CAS  Google Scholar 

  • Wolff NA, Kinne R (1988) Taurine transport by rabbit kidney brush-border membranes: coupled to sodium chloride, and the membrane potential. J Membrane Biol 102:131–139

    CAS  Google Scholar 

  • Wolff SD, Eng C, Balaban RS (1988) NMR studies of renal phosphate metabolites in vivo: effects of hydration and dehydration. Am J Physiol 255:F581-F589

    PubMed  CAS  Google Scholar 

  • Wolff SD, Yancey PH, Stanton TS, Balban RS (1989a) A simple HPLC method for quantitating the major organic solutes of the renal medulla. Am J Physiol 256:F954-F956

    PubMed  CAS  Google Scholar 

  • Wolff SD, Stanton TS, James SL, Balaban RS (1989b) Acute regulation of the predominant organic solutes of the rabbit renal inner medulla. Am J Physiol 257:F676-F681

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1966) Physiology of body fluids. In: Ruch TC, Patton HD (eds) Physiology and biophysics, 19th edn. Saunders, Philadelphia, pp 871–898

    Google Scholar 

  • Woods JM (1988) Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria. J Membrane Biol 106:183–202

    Google Scholar 

  • Wright CE, Tallan HH, Lin YY, Gaull GE (1986) Taurine: biological update. Annu Rev Biochem 55:427–453

    PubMed  CAS  Google Scholar 

  • Yancey PH (1985) Organic osmotic effectors in marine cartilaginous fishes. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Springer, Berlin Heidelberg New York, pp 424–436

    Google Scholar 

  • Yancey PH (1988) Osmotic effectors in kidneys of xeric and mesic rodents: corticomedullary distributions and changes with water availability. J Comp Physiol B 158:369–380

    PubMed  CAS  Google Scholar 

  • Yancey PH, Burg MB (1989) Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am J Physiol 257:F602-F607

    PubMed  CAS  Google Scholar 

  • Yancey PH, Burg MB (1990) Counteracting effects of urea and betaine in mammalian cells in culture. Am J Physiol 258:R198-R204

    PubMed  CAS  Google Scholar 

  • Yancey PH, Somero GN (1979) Counteraction of urea de stabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J 183:317–323

    PubMed  CAS  Google Scholar 

  • Yancey PH, Somero GN (1980) Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J Exp Zool 212:205–213

    CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    PubMed  CAS  Google Scholar 

  • Yancey PH, Burg MB, Bagnasco SM (1990) Effects of NaCl, glucose and aldose reductase on cloning efficiency of renal medullary cells. Am J Physiol 258:C156-C163

    PubMed  CAS  Google Scholar 

  • Zelikovic I, Stejskal-Lorenz E, Lohstroh P, Budreau A, Chesney RW (1989) Anion dependence of taurine transport by rat renal brush-border membrane vesicles. Am J Physiol 256:F646-F655

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Law, R.O., Burg, M.B. (1991). The Role of Organic Osmolytes in the Regulation of Mammalian Cell Volume. In: Gilles, R., Hoffmann, E.K., Bolis, L. (eds) Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76226-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76226-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76228-4

  • Online ISBN: 978-3-642-76226-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics