Skip to main content

Applying Linear Predictive Coding (LPC) to Frequency-spectrum Analysis of Animal Acoustic Signals

  • Chapter
Animal Acoustic Communication

Abstract

The study of natural acoustic signaling in animals frequently raises questions about the distinctive, or functionally significant, features of the sounds being examined. Such questions have been approached using a variety of methods, but necessarily include acoustic analysis of the signals themselves. Historically, these analyses relied heavily on the analog sound spectrograph (also frequently called the sonagraph or sonography after the Kay Elemetrics Corporation’s trademark name, “Sonagraph”). Sound spectrography provides a visible record of the frequency components of an acoustic waveform and had been eagerly anticipated by speech researchers for some time before the requisite technology actually became available shortly after the end of the World War II (see, for example, Koenig et al. 1946; Cooper 1950; Fant 1960; Nearey 1978). This instrument subsequently served as a primary analysis tool for phoneticians and others over a number of years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baken RJ (1987) Clinical measurement of speech and voice. College-Hill, Boston

    Google Scholar 

  • Beecher MD (1988) Spectrographic analysis of animal vocalizations: implications of the “uncertainty principle”. Bioacoustics 1:187–208

    Google Scholar 

  • Bell Telephone Laboratories (1946) Technical aspects of visible speech. J Acoust Soc Am 17:1–89

    Google Scholar 

  • Capranica RR (1966) Vocal response of the bullfrog to natural and synthetic mating calls. J Acoust Soc Am 40:1131–1139

    Article  Google Scholar 

  • Carterette EC, Shipley C, Buchwald JS (1979) Linear prediction theory of vocalization in cat and kitten. In: Lindblom B, Öhman S (eds) Frontiers of speech communication research. Academic Press, New York, p 245

    Google Scholar 

  • Chiba T, Kajiyama J (1941) The vowel: its nature and structure. Tokyo-Kaiseikan, Tokyo

    Google Scholar 

  • Cooper FS (1950) Spectrum analysis. J Acoust Soc Am 22:761–762

    Article  Google Scholar 

  • Davis LI (1964) Biological acoustics and the use of the sound spectrograph. Southwest Naturalist 9:118–145

    Article  Google Scholar 

  • Fant G (1960) Acoustic theory of speech production. Mouton, The Hague

    Google Scholar 

  • Fitch WT, Hauser MD (1995) Vocal production in nonhuman primates: acoustics, physiology, and functional constraints on ‘honest’ advertisement. Am J Primatol 37:191–219

    Article  Google Scholar 

  • Flanagan JL (1972) Speech analysis, synthesis, and perception, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gaunt AS (1983) On sonograms, harmonics, and assumptions. Condor 85:259–261

    Article  Google Scholar 

  • Greenewalt CH (1968) Bird song: acoustics and physiology. Smithsonian, Washington DC

    Google Scholar 

  • Haimoff EH (1983) Occurrence of anti-resonance in the song of the siamang (Hylobates syndactylus). Am J Primatol 5:249–256

    Article  Google Scholar 

  • Hall-Craggs J (1979) Sound spectrographic analysis: suggestions for facilitating auditory imagery. Condor 81:185–192

    Article  Google Scholar 

  • Joos M (1948) Acoustic phonetics. Language 24 (Suppl):1–136

    Article  Google Scholar 

  • Kent RD, Read C (1992) The acoustic analysis of speech. Singular, San Diego

    Google Scholar 

  • Klatt DH (1980) Software for a cascade/parallel formant synthesizer. J Acoust Soc Am 67:971–995

    Article  Google Scholar 

  • Koenig W, Dunn HK, Lacy LY (1946) The sound spectrograph. J Acoust Soc Am 18:19–49

    Article  Google Scholar 

  • Lieberman P, Blumstein SE (1988) Speech physiology, speech perception, and acoustic phonetics. Cambridge Univ, New York

    Google Scholar 

  • Makhoul J (1975) Linear prediction: a tutorial review. Proc IEEE 63:561–580

    Article  Google Scholar 

  • Markel JD, Gray AH (1976) Linear prediction of speech. Springer Berlin Heidelberg New York

    Book  Google Scholar 

  • Marier P (1969) Tonal quality of bird sounds. In: Hinde RA (ed), Bird vocalizations. Cambridge Univ Press, New York, p 5

    Google Scholar 

  • Nearey TM (1978) Phonetic feature systems for vowels. Indiana Univ Linguistics Club, Bloomington

    Google Scholar 

  • O’Shaugnessy D (1987) Speech communication. Addison-Wesley Reading

    Google Scholar 

  • Owren MJ (1990) Classification of alarm calls by vervet monkeys, (Cercopithecus aethiops). II. Synthetic calls. J Comp Psychol 104:29–41

    Article  PubMed  CAS  Google Scholar 

  • Owren MJ, Bernacki RH (1988) The acoustic features of vervet monkey (Cercopithecus aethiops) alarm calls. J Acoust Soc Am 83:1927–1935

    Article  PubMed  CAS  Google Scholar 

  • Owren MJ, Linker CD (1995) Some analysis methods that may be useful to acoustic primatologists. In: Zimmermann E, Newman JD, Jürgens U (eds) Current topics in primate vocal communication. Plenum, New York, p 1

    Google Scholar 

  • Owren MJ, Seyfarth RM, Cheney DL (1997) The acoustic features of vowel-likegrunt calls in chacma baboons (Papio cynocephalus ursinus): implications for production processes and functions. Acoust Soc Am, 101:2951–2963

    Article  CAS  Google Scholar 

  • Potter RK, Kopp GA, Green HC (1947) Visible speech. Van Nostrand, New York

    Google Scholar 

  • Rabiner LR, Schafer RW (1978) Digital processing of speech signals. Prentice-Hall, Englewood-Cliffs

    Google Scholar 

  • Rendall D (1996) Social communication and vocal recognition in free-ranging rhesus monkeys (Macaca mulatta). Doctoral Diss, University of California, Davis

    Google Scholar 

  • Rendall D, Rodman PS, Emond RE (1996) Vocal recognition of individuals and kin in free-ranging rhesus monkeys. Anim Behav 51:1007–1015

    Article  Google Scholar 

  • Robinson EA (1967) Predictive decomposition of time series with application to seismic exploration. Geophysics 32:418–484

    Article  Google Scholar 

  • Rowell TE (1962) Agonistic noises of the rhesus monkey (Macaca mulatta). Symp Zool Soc London 8: 91–96

    Google Scholar 

  • Rowell TE, Hinde RA (1962) Vocal communication by the rhesus monkey (Macaca mulatta). Proc Zool Soc Lond 138:279–294

    Google Scholar 

  • Schön Ybarra M (1995) A comparative approach to the nonhuman primate vocal tract: implications for sound production. In: Zimmermann E, Newman JD, Jürgens U (eds) Current topics in primate vocal communication. Plenum, New York, p 185

    Google Scholar 

  • Seyfarth RM, Cheney DL (1984) The acoustic features of vervet monkey grunts. J Acoust Soc Am 75:1623–1628

    Article  PubMed  CAS  Google Scholar 

  • Seyfarth RM, Cheney DL, Harcourt AH, Stewart K (1994) The acoustic features of double-grunts by mountain gorillas and their relation to behavior. Am J Primatol 33:31–50

    Article  Google Scholar 

  • Staddon JER, McGeorge LW, Bruce RA, Klein FF (1978) A simple method for the rapid analysis of animal sounds. Z Tierpsychol 48:306–330

    Google Scholar 

  • Thorpe WH (1954) The process of song learning in the chaffinch as studied by means of the sound spectrograph. Nature 173:465–469

    Article  Google Scholar 

  • Titze IR (1994) Principles of voice production. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Wakita H (1976) Instrumentation for the study of speech acoustics. In: Lass NJ (ed) Contemporary issues in experimental phonetics. Academic, New York, p 3

    Google Scholar 

  • Watkins WA (1967) The harmonic interval: fact or artifact in spectral analysis of pulse trains. In: Tavolga WN (ed) Marine bioacoustics, vol 2. Pergamon, New York, p 15

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelbeg

About this chapter

Cite this chapter

Owren, M.J., Bernacki, R.H. (1998). Applying Linear Predictive Coding (LPC) to Frequency-spectrum Analysis of Animal Acoustic Signals. In: Hopp, S.L., Owren, M.J., Evans, C.S. (eds) Animal Acoustic Communication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76220-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76220-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76222-2

  • Online ISBN: 978-3-642-76220-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics