Skip to main content

Polymerization of Microtubule Proteins from Antarctic Fish

  • Conference paper
Biology of Antarctic Fish

Abstract

Microtubules are a major component of the cytoskeleton of most eukaryotic cells. They participate in many fundamental processes, including mitosis, nerve growth and regeneration, the intracellular transport of organelles, and the determination of cell shape. The formation of microtubules from their subunit proteins, tubulin αβ dimers and microtubule-associated proteins (MAPs), is an entropically driven process that is favored by high temperatures (Correia and Williams 1983). For example, the microtubule proteins of mammals and birds polymerize to yield microtubules at temperatures near 37 °C, but these polymers are “cold-labile”; they disassemble to their subunits at low temperatures (0–4 °C). How, then, do the microtubules of cold-living poikilotherms (e.g., the fish of the antarctic marine ecosystem) assemble and function at body temperatures as low as −1.9 °C?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharyya B, Sackett DL, Wolff J (1985) Tubulin, hybrid dimers, and tubulin S: stepwise charge reduction and polymerization. J Biol Chem 260:10208–10216

    PubMed  CAS  Google Scholar 

  • Breitling F, Little M (1986) Carboxy-terminal regions on the surface of tubulin and microtubules: epitope locations of YOL1/34, DM1A and DM1B. J Mol Biol 189:367–370

    Article  PubMed  CAS  Google Scholar 

  • Correia JJ, Williams RC Jr (1983) Mechanisms of assembly and disassembly of microtubules. Annu Rev Biophys Bioeng 12:211–235

    Article  PubMed  CAS  Google Scholar 

  • Detrich HW III, Overton SA (1986) Heterogeneity and structure of brain tubulins from cold-adapted antarctic fishes: comparison to brain tubulins from a temperate fish and a mammal. J Biol Chem 261:10922–10930

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Overton SA (1988) Antarctic fish tubulins: heterogeneity, structure, amino acid compositions, and charge. Comp Biochem Physiol 90B:593–600

    CAS  Google Scholar 

  • Detrich HW III, Wilson L (1983) Purification, characterization, and assembly properties of tubulin from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus. Biochemistry 22:2453–2462

    Article  PubMed  CAS  Google Scholar 

  • Detrich HW III, Jordan MA, Wilson L, Williams RC Jr (1985) Mechanism of microtubule assembly: changes in polymer structure and organization during assembly of sea urchin egg tubulin. J Biol Chem 260:9479–9490

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Prasad V, Ludueña RF (1987) Cold-stable microtubules from antarctic fishes contain unique α tubulins. J Biol Chem 262:8360–8366

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Johnson KA, Marchese-Ragona SP (1989) Polymerization of antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry 28:10085–10093

    Article  PubMed  CAS  Google Scholar 

  • Detrich HW III, Neighbors BW, Sloboda RD, Williams RC Jr (1990) Microtubule-associated proteins from antarctic fishes. Cell Motil Cytoskel 17:174–186

    Article  CAS  Google Scholar 

  • DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic map folio series, Folio 15. Am Geogr Soc, New York, pp 1–10

    Google Scholar 

  • Gaskin F, Cantor CR, Shelanski ML (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89:737–758

    Article  PubMed  CAS  Google Scholar 

  • Herzog W, Weber K (1977) In vitro assembly of pure tubulin into microtubules in the absence of microtubule-associated proteins and glycerol. Proc Natl Acad Sci USA 74:1860–1864

    Article  PubMed  CAS  Google Scholar 

  • Himes RH, Burton PR, Gaito JM (1977) Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins. J Biol Chem 252:6222–6228

    PubMed  CAS  Google Scholar 

  • Job D, Rauch CT, Fischer EH, Margolis RL (1982) Recycling of cold-stable microtubules: evidence that cold stability is due to substoichiometric polymer blocks. Biochemistry 21:509–515

    Article  PubMed  CAS  Google Scholar 

  • Johnson KA, Borisy GG (1975) The equilibrium assembly of microtubules in vitro. In: Inoue’ S, Stephens RE (eds) Molecules and cell movement. Raven, New York, pp 119–139

    Google Scholar 

  • Jones DH, Gray EG, Barron J (1980) Cold stable microtubules in brain studied in fractions and slices. J Neurocytol 9:493–504

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 80:266–276

    Article  PubMed  CAS  Google Scholar 

  • Kirchner K, Mandelkow E-M (1985) Tubulin domains responsible for assembly of dimers and protofilaments. EMBO J 4:2397–2402

    PubMed  CAS  Google Scholar 

  • Lee JC, Timasheff SN (1977) In vitro reconstitution of calf brain microtubules: effects of solution variables. Biochemistry 16:1754–1764

    Article  PubMed  CAS  Google Scholar 

  • Lowry JK (1975) Soft bottom macrobenthic community of Arthur Harbor, Antarctica. In: Pawson DL (ed) Biology of the antarctic seas, vol 5. Antarctic Res Ser 23. Am Geophys Union, Washington, pp 1–19

    Google Scholar 

  • Mandelkow E-M, Herrmann M, Ruhl U (1985) Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J Mol Biol 185:311–327

    Article  PubMed  CAS  Google Scholar 

  • Margolis RL, Rauch CT, Job D (1986) Purification and assay of a 145-kDa protein (STOP145) with microtubule-stabilizing and motility behavior. Proc Natl Acad Sci USA 83:639–643

    Article  PubMed  CAS  Google Scholar 

  • Matus A (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology. Ann Rev Neurosci 11:29–44

    Article  PubMed  CAS  Google Scholar 

  • Murphy DB, Johnson KA, Borisy GG (1977) Role of tubulin-associated proteins in microtubule nucleation and elongation. J Mol Biol 117:33–52

    Article  PubMed  CAS  Google Scholar 

  • Olmsted JB (1986) Microtubule-associated proteins. Ann Rev Cell Biol 2:421–457

    Article  PubMed  CAS  Google Scholar 

  • Olmsted JB, Borisy GG (1975) Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry 14:2996–3005

    Article  PubMed  CAS  Google Scholar 

  • Robinson J, Engelborghs Y (1982) Tubulin polymerization in dimethyl sulfoxide. J Biol Chem 257:5367–5371

    PubMed  CAS  Google Scholar 

  • Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  • Sackett DL, Wolff J (1986) Proteolysis of tubulin and the substructure of the tubulin dimer. J Biol Chem 261:9070–9076

    PubMed  CAS  Google Scholar 

  • Sackett DL, Bhattacharyya B, Wolff J (1985) Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem 260:43–45

    PubMed  CAS  Google Scholar 

  • Serrano L, Avila J (1985) The interaction between subunits in the tubulin dimer. Biochem J 230:551–556

    PubMed  CAS  Google Scholar 

  • Serrano L, de la Torre J, Maccioni RB, Avila J (1984) Involvement of the carboxy-terminal domain of tubulin in the regulation of its assembly. Proc Natl Acad Sci USA 81:5989–5993

    Article  PubMed  CAS  Google Scholar 

  • Sloboda RD, Dentier WL, Rosenbaum JL (1976) Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry 15:4497–4505

    Article  PubMed  CAS  Google Scholar 

  • Strömberg E, Serrano L, Avila J, Wallin W (1989) Unusual properties of a cold-labile fraction of Atlantic cod (Gadus morhua) brain microtubules. Biochem Cell Biol 67:791–800

    Article  PubMed  Google Scholar 

  • Suprenant KA, Rebhun LI (1983) Assembly of unfertilized sea urchin egg tubulin at physiological temperatures. J Biol Chem 258:4518–4525

    PubMed  CAS  Google Scholar 

  • Suprenant KA, Rebhun LI (1984) Purification and characterization of oocyte cytoplasmic tubulin and meiotic spindle tubulin of the surf clam, Spisula solidissima. J Cell Biol 98:253–266

    Article  PubMed  CAS  Google Scholar 

  • Swezey RR, Somero GN (1982) Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry 21:4496–4503

    Article  PubMed  CAS  Google Scholar 

  • Vallee RB (1982) A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol 92:435–442

    Article  PubMed  CAS  Google Scholar 

  • Williams RC Jr, Correia JJ, DeVries AL (1985) Formation of microtubules at low temperatures by tubulin from antarctic fish. Biochemistry 24:2790–2798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Detrich, H.W. (1991). Polymerization of Microtubule Proteins from Antarctic Fish. In: di Prisco, G., Maresca, B., Tota, B. (eds) Biology of Antarctic Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76217-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76217-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76219-2

  • Online ISBN: 978-3-642-76217-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics