Hemodynamics

  • X. P. Lefebvre
  • E. M. Pedersen
  • J. Ø. Hjortdal
  • A. P. Yoganathan

Abstract

This chapter focuses on the basic hemodynamic principles as applied to blood flow in the large arteries of the body and across arterial stenoses. The pulsatile nature of blood flow, the elasticity of the arteries and their complex geometry, the nature of peripheral resistance and the non-Newtonian character of blood are just a few important parameters that have to be taken into consideration when describing blood flow in the human body. Due to these complexities, a theoretical description of the hemodynamic principles of the human arterial tree is at best incomplete.

Keywords

Vortex Catheter Luminal Cardiol Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whitaker S (1986) Introduction to fluid mechanics. Krieger. Malabar, FL, USA.Google Scholar
  2. 2.
    Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York.Google Scholar
  3. 3.
    Caro CG, Pedley TJ, Schroter RC, Seed WA (1978) The mechanics of the circulation. Oxford University Press, Oxford.Google Scholar
  4. 4.
    Schlichting H (1978) Boundary-layer theory. McGraw-Hill, New York.Google Scholar
  5. 5.
    Yoganathan AP, Cape EG, Sung HW, Williams FP, Jimoh A (1988) Review of hydrodynamic principles for the cardiologist: applications to the study of blood flow and jet by imaging techniques. J Am Coll Cardiol 12:1344–1353.PubMedCrossRefGoogle Scholar
  6. 6.
    White FM (1979) Fluid mechanics. McGraw-Hill, New York.Google Scholar
  7. 7.
    Friedman MH, Deters OJ, Mark FF, Bargeron CB, Hutchins GM (1983) Arterial geometry affects hemodynamics — potential risk factor for atherosclerosis. Atherosclerosis 46:225–231.PubMedCrossRefGoogle Scholar
  8. 8.
    Bargeron BC, Hutchings GM, Moore GW, Deters OJ, Mark FF, Friedman MH (1986) Distribution of geometric parameters of human aortic bifurcations. Arteriosclerosis 6:109–113.PubMedCrossRefGoogle Scholar
  9. 9.
    Gosling RG, Newman DL, Bowden NLR, Twinn KW (1971) The area ratio of normal aortic junctions: aortic configuration and pulse-wave reflection. British Journal of Radiology 44:850–853.PubMedCrossRefGoogle Scholar
  10. 10.
    Feuerstein IA, El Masry OA, Round GF (1976) Arterial bifurcation flows — effects of flow rate and area ratio. Can J Physiol Pharmacol 54(6):795–807.PubMedCrossRefGoogle Scholar
  11. 11.
    Siouffi M, Pelissier R, Farahifar D, Rieu R (1984) The effect of unsteadiness on the flow through stenoses and bifurcations. J Biomech 17(5): 299–315.PubMedCrossRefGoogle Scholar
  12. 12.
    Ku DN, Giddens RP (1983) Pulsatile flow in a model carotid bifurcation. Arteriosclerosis 3(1): 31–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Lutz RJ, Hsu L, Menawat J, Zrubek J, Edwards K (1983) Comparison of steady and pulsatile flow in a double branching arterial model. J Biomech 16:753–766.PubMedCrossRefGoogle Scholar
  14. 14.
    El Masry OA, Feuerstein IA, Pound GF (1978) Experimental evaluation of streamline patterns and separated flows in a series of branching vessels with implications for atherosclerosis and thrombosis. Circ Res 43(4):608–617.PubMedGoogle Scholar
  15. 15.
    Cho YI, Back LH, Crawford DW (1985) Experimental investigation of branch flow ration, angle, and Reynolds number effects on the pressure and flow fields in arterial branch models. J Biomed Eng 107:257–267.Google Scholar
  16. 16.
    Walburn FJ, Stein PD (1980) Flow in a symmetrically branched tube simulating the aortic bifurcation: the effects of unevenly distributed flow. Ann Biomed Eng 8:159–173.PubMedCrossRefGoogle Scholar
  17. 17.
    Moravec S, Liepsch D (1983) Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluid. Part I. Biorheology 20:745–759.PubMedGoogle Scholar
  18. 18.
    Liepsch D (1986) Flow in tubes and arteries — a comparison. Biorheology 23:395–433.PubMedGoogle Scholar
  19. 19.
    Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514.PubMedGoogle Scholar
  20. 20.
    Friedman MH, Bargeron CB, Hutchins GM, Mark FF, Deters OJ (1980) Hemodynamic measurements in human arterial casts, and their correlation with histology and luminal area. J Biomech Eng 102:247–251.PubMedCrossRefGoogle Scholar
  21. 21.
    Stein PD, Sabbah HN (1980) Hemorheology of turbulence. Biorheology 17:301–319.PubMedGoogle Scholar
  22. 22.
    Brech R, Bellhouse BJ (1973) Flow in branching vessels. Cardiovasc Res 7:593–600.PubMedCrossRefGoogle Scholar
  23. 23.
    Fukushima T, Azuma T (1982) The horseshoe vortex: a secondary flow generated in arteries with stenosis, bifurcations, and branchings. Biorheology 19:143–154.PubMedGoogle Scholar
  24. 24.
    Fukushima T, Komma T, Azuma T, Harakawa K (1987) Chracteristics of secondary flow in steady and pulsatile flows through a symmetrical bifurcation. Biorheology 24:3–12.PubMedGoogle Scholar
  25. 25.
    Fox JA, Hugh AE (1966) Localization of atheroma: a theory based on boundary layer separation. Br Heart J 28:388–399.PubMedCrossRefGoogle Scholar
  26. 26.
    Walbura FJ, Blick EF, Stein PD (1979) Effect of the branch-to-trunk area ratio on the transition to turbulent flow: implications in the cardiovascular system. Biorheology 16:411–417.Google Scholar
  27. 27.
    Karino T, Goldsmith HL (1985) Particle flow behavior in models of branching vessels II. Effects of branching angle and diameter ratio on flow patterns. Biorheology 22:87–104.PubMedGoogle Scholar
  28. 28.
    McDonald DA (1974) Blood flow in arteries, 2nd edn. Arnold, London.Google Scholar
  29. 29.
    Dean WR (1927/1928) The streamline motion of fluid in a curved pipe. Phil Mag 4(7):208 and 5:673.Google Scholar
  30. 30.
    Rodkiewicz CM (ed) (1983) Arteries and arterial blood flow, biological and physiological aspects. Springer, Vienna New York.Google Scholar
  31. 31.
    Khalifa AMA, Giddens DP (1981) Characterization and evolution of poststenotic flow disturbances. J Biomech 14:279–296.PubMedCrossRefGoogle Scholar
  32. 32.
    Hinze J (1975) Turbulence, 2nd edn. McGraw-Hill, New York.Google Scholar
  33. 33.
    Thiele BL, Hutchison KJ, Greene FM, Forster FK, Strandness DE (1983) Pulsed Doppler waveform patterns produced by smooth stenosis in the dog thoracic aorta. In: Taylor DEM, Stevens AL (eds) Blood flow — theory and practice. Academic, London, pp 85–104.Google Scholar
  34. 34.
    Solzbach U, Wollschlager H, Zeiher A, Just H (1987) Effect of stenotic geometry on flow behavior across stenotic models. Med Biol Eng Comput 25:543–550.PubMedCrossRefGoogle Scholar
  35. 35.
    Young DP, Tsai FY (1973) Flow characteristics in models of arterial stenoses. I. Steady flow. J Biomech 6:395–410.PubMedCrossRefGoogle Scholar
  36. 36.
    Kindt GW, Youmans JR (1969) The effect of stricture length on critical arterial stenosis. Surg Gynecol Obstet 128:729–734.PubMedGoogle Scholar
  37. 37.
    Vonrudden WJ, Blaisdell FW, Hall AD, Thomas AN (1964) Multiple arterial stenoses: effect on blood flow. Arch Surg 89:307–315.CrossRefGoogle Scholar
  38. 38.
    Yongchareon W, Young DF (1979) Initiation of turbulence in models of arterial stenoses. J Biomech 12:185–196.PubMedCrossRefGoogle Scholar
  39. 39.
    Neuwirth JG (1977) Pressure and velocity fluctuations associated with the flow through a stenosis with upstream roughness. IEEE Trans Biomed Eng BME 24:269–277.CrossRefGoogle Scholar
  40. 40.
    Neumyer MM, Thiele BL (1988) Evaluation of lower extremity occlusive disease with Doppler ultrasound. In: Taylor KJW, Burns PN, Wells PNT (eds) Clinical applications of Doppler ultrasound. Raven, New York, pp 317–337.Google Scholar
  41. 41.
    Ahmed SA, Giddens DP (1983) Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J Biomech 16:505–516.PubMedCrossRefGoogle Scholar
  42. 42.
    Nerem RM, Seed WA (1972) An in vivo study of aortic flow disturbances. Cardiovasc Res 6:1–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Evans DH, Barrie MJ, Bentley S, Bell PRF (1980) The relationship between ultrasonic pulsatility index and proximal arterial stenosis in a canine model. Circ Res 46:470–475.PubMedGoogle Scholar
  44. 44.
    Talukder N, Fulenwider JT, Mabon RF, Giddens DP (1986) Post-stenotic flow disturbance in the dog aorta as measured with pulsed Doppler ultrasound. J Biomech Eng 108:259–265.PubMedCrossRefGoogle Scholar
  45. 45.
    Rittgers SE, Fei D-Y (1988) Flow dynamics in a stenosed carotid bifurcation model-part II: derived indices. Ultrasound Med Biol 14:33–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Rittgers SE, Shu MCS (1990) Doppler color-flow images from a stenosed arterial model: interpretation of flow patterns. J Vasc Surg 12:511–522.PubMedGoogle Scholar
  47. 47.
    Maier SE, Maier D, Boesiger P, Moser VT, Vieli A (1989) Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology 171:487–492.PubMedGoogle Scholar
  48. 48.
    Lundbrook J (1962) Functional aspects of the veins of the leg. Am Heart J 64:706–713.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • X. P. Lefebvre
  • E. M. Pedersen
  • J. Ø. Hjortdal
  • A. P. Yoganathan

There are no affiliations available

Personalised recommendations