Advertisement

Magnetic Resonance Arteriography: Initial Clinical Results

  • P. Lanzer

Abstract

Definite diagnosis of vascular diseases traditionally relies on detection of filling defects on contrast-enhanced radiograms [1]. Some of the limitations of this luminographic approach, such as risk of complications, exposure to ionizing radiation, and inadequate spatial definition of lesion morphology, are well recognized. Others, such as frequent underestimation of the intramural extent and severity of the disease, the lack of tissue characterization, and the virtual absence of information regarding flow and vessel wall functin have only recently received due attention [2, 3]. However, despite these limitations, at the outset of the 1990s, radiographic arteriography remains the definite means to assess patients with vascular disease.

Keywords

Carotid Bifurcation Deep Femoral Artery Initial Clinical Result Septal Hematoma Maximum Intensity Projec 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams HL (ed) (1983) Abrams angiography, vol I–III. Little, Brown, Boston.Google Scholar
  2. 2.
    Pagnoli P (1989) Ultrasonic evaluation of arterial intima and media thickness: development and validation of methodology. In: Glagov S, Newman WP III, Schafer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 705–732.Google Scholar
  3. 3.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375.PubMedCrossRefGoogle Scholar
  4. 4.
    Ryan US (ed) (1988) Endothelial cells, vol I–III. CRC, Boca Raton.Google Scholar
  5. 5.
    Anonymous (1986) Dyslipoproteinemia in North America: The Lipid Research Clinics Program Prevalence Study Circulation [Suppl II] 73:1.Google Scholar
  6. 6.
    Topol EJ (ed) (1990) Textbook of interventional cardiology. Saunders, Philadelphia.Google Scholar
  7. 7.
    Dondelinger RF, Rossi P, Kurdziel JC, Wallace S (eds) (1990) Interventional radiology. Thieme, Stuttgart.Google Scholar
  8. 8.
    Herfkens RJ, Higgins CB, Hricak H, Lipton MJ, Crooks LE, Sheldon PE, Kaufman L (1983) Nuclear magnetic resonance imaging of atherosclerotic disease. Radiology 148:161–166.PubMedGoogle Scholar
  9. 9.
    Bogren HG, Mohiaddin RH, Klipstein RK, Firmin DN, Underwood RS, Rees SR, Longmore DB (1989) The function of the aorta in ischemic heart disease: a magnetic resonance and angiographic study of aortic compliance and blood flow patterns. Am Heart J 118:234–247.PubMedCrossRefGoogle Scholar
  10. 10.
    Pearlman JD (1986) Nuclear magnetic resonance spectral signatures of liquid crystals in human atheroma as basis for multi-dimensional digital imaging of atherosclerosis. Thesis, School of Engineering, University of Virginia.Google Scholar
  11. 11.
    van Weeden J, Meuli RA, Edelman RR, Frank LR, Brady TJ, Rosen BR (1985) Projective imaging of pulsatile flow with magnetic resonance. Science 230:946–948.CrossRefGoogle Scholar
  12. 12.
    Bryant DJ, Payne JA, Firmin DN, Longmore DB (1984) Measurements of flow with NMR using a gradient pulse and phase difference technique. J Comput Assist Tomogr 8:588–593.PubMedCrossRefGoogle Scholar
  13. 13.
    Suryan G (1951) Nuclear resonance in flowing liquids. Proc Indian Acad Sci [A] 33:107–111.Google Scholar
  14. 14.
    Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638.CrossRefGoogle Scholar
  15. 15.
    Singer JR (1959) Blood flow rates by nuclear magnetic resonance measurements. Science 130:1652–1653.PubMedCrossRefGoogle Scholar
  16. 16.
    Hahn EL (1960) Detection of sea-water motion by nuclear precession. J Geophys Res 65:776–777.CrossRefGoogle Scholar
  17. 17.
    Battocletti JH (1985) Blood flow measurements by NMR. Crit Rev Biomed Eng 13:311–367.Google Scholar
  18. 18.
    Hinshaw WS, Bottomley PA, Holland GN (1977) Radiogaphic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270:722–723.PubMedCrossRefGoogle Scholar
  19. 19.
    Waluch V, Bradley WG (1984) NMR even echo rephasing in slow laminar flow. J Comput Assist Tomogr 8:594–598.PubMedCrossRefGoogle Scholar
  20. 20.
    Macovski A (1982) Selective projection imaging: applications to radiography and NMR. IEEE Trans Med Imag MI-1:42–47.CrossRefGoogle Scholar
  21. 21.
    Schmalrock P, Chun Y, Chakeres DW, Kohli J, Pelc NJ (1990) Volume MR angiography: methods to achieve very short echo times. Radiology 175:861–865.Google Scholar
  22. 22.
    Firmin DN, Klipstein RH, Hounsfield GL, Paley MP, Longmore DB (1989) Echo-planar high-resolution flow velocity mapping. Magn Res Med 12:316–327.CrossRefGoogle Scholar
  23. 23.
    Guilfoyle DN, Gibbs P, Ordidge RJ, Mansfield P (1991) Real-time flow measurements using echo-planar imaging. Magn Res Med 18:1–8.CrossRefGoogle Scholar
  24. 24.
    Dumoulin CL, Hart HR (1986) Magnetic resonance angiography. Radiology 161:717–720.PubMedGoogle Scholar
  25. 25.
    Dixon WT, Du LN, Faul DD, Gado M, Rossnick S (1986) Projection angiograms of blood labeled by adiabatic fast passage. Magn Res Med 3:454–462.CrossRefGoogle Scholar
  26. 26.
    Gullberg GT, Wherli FW, Shimakawa A, Simons MA (1987) MR vascular imaging with a fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Radiology 165:241–246.PubMedGoogle Scholar
  27. 27.
    Keller PJ, Drayer BP, Fram EK, Williams KD, Dumoulin CL, Souza SP (1989) MR angiography with two-dimensional acquisition and three-dimensional display. Radiology 173:527–532.PubMedGoogle Scholar
  28. 28.
    Laub GA, Kaider WA (1988) MR angiography with gradient motion refocusing. J Comput Assist Tomogr 12:377–382.PubMedCrossRefGoogle Scholar
  29. 29.
    Ruggieri PM, Laub GA, Masaryk TJ, Modic MT (1989) Intracranial circulation: pulsesequence considerations in three-dimensional (volume) MR angiography. Radiology 171:785–791.PubMedGoogle Scholar
  30. 30.
    Rossnick S, Laub G, Braekle G, Bachus R, Kennedy D, Nelson A, Dzik S, Starewicz P (1986) Three-dimensional display of blood vessels in MRI. In: Proceedings of the IEEE Computer Cardiology Conference. Institute of Electrical and Electronic Engineers, New York, pp 193–196.Google Scholar
  31. 31.
    Felmlee JP, Ehman RL (1987) Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 164:559–564.PubMedGoogle Scholar
  32. 32.
    Pernicone JR, Siebert JE, Potchen EJ, Pera A, Dumoulin CL, Souza SP (1990) Three-dimensional phase-contrast MR angiography in the head and neck: preliminary report. AJNR 11:457–466.PubMedGoogle Scholar
  33. 33.
    Masaryk TJ, Ross JS, Modic MT, Lenz GW, Haacke EM (1988) Carotid bifurcation: MR imaging. Radiology 166:461–466.PubMedGoogle Scholar
  34. 34.
    Masaryk TJ, Modic MT, Ross JS, Ruggieri PM, Laub GA, Lenz GW, Haacke EM, Selman WR, Witznitzer M, Harik SI (1989) Intracranial circulation: preliminary clinical results with three dimensional (volume) MR angiography. Radiology 171:793–799.PubMedGoogle Scholar
  35. 35.
    Lewin JS, Laub G, Hausmann R (1991) Three-dimensional time-of-flight MR angiogrpahy: applications in the abdomen and thorax. Radiology 179:261–264.PubMedGoogle Scholar
  36. 36.
    Ku DN, Giddens DP, Phillips DJ, Strandness DE Jr (1985) Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. Ultrasound Med Biol 11:13–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR 154:623–629.PubMedGoogle Scholar
  38. 38.
    Chakeres DW, Schmalbrock P, Brogan M, Yuan C, Cohen L (1991) Normal venous anatomy of the brain: demonstration with gadopentetate dimeglumine in enhanced 3-D MR angiography. AJR 156:161–172.PubMedGoogle Scholar
  39. 39.
    Matthaei D, Haasse A, Henrich D, Duehmke (1990) Cardiac and vascular imaging with an MR snapshot technique. Radiology 177:527–532.PubMedGoogle Scholar
  40. 40.
    Wang SJ, Hu BS, Macovski A, Nishimura DG (1991) Coronary angiography using fast selective inversion recovery. Magn Res Med 18:417–423.CrossRefGoogle Scholar
  41. 41.
    Cho ZH, Mun CW, Friedenberg RM (1991) NMR angiography of coronary vessels with 2-D planar image scanning. Magn Res Med 20:134–143.CrossRefGoogle Scholar
  42. 42.
    Lanzer P, McKibbin W, Bohning D, Thorn B, Gross G, Cranney G, Nanda N, Pohost G (1990) Aortoiliac imaging by projective phase sensitive MR angiography: effects of triggering and timing of data acquisition on image quality. Magn Res Imag 8:107–116.CrossRefGoogle Scholar
  43. 43.
    Lanzer P, Bohning D, Groen J, Gross G, Nanda N, Pohost G (1990) Aortoiliac and femoropopliteal phase-based NMR angiography: a comparison between FLAG and RSE. Magn Res Med 15:372–385.CrossRefGoogle Scholar
  44. 44.
    Lanzer P, Pinheiro L, Thorn B, Pohost G (1991) Periphere Spinaustausch-Kernspinre-sonanz-Angiographie: Untersuchungen zum Effekt des Blutflusses auf Kontrast. Z Kardiol 80:37–43.PubMedGoogle Scholar
  45. 45.
    Edelman RR, Wentz KU, Mattle H, Zhao B, Liu C, Kim D, Laub G (1989) Projection arteriography and venography: initial clinical results with MR. Radiology 172:351–357.PubMedGoogle Scholar
  46. 46.
    Lanzer P, Gross GM, Keller FS, Pohost GM (1991) Sequential 2D inflow venography: initial clinical observations. Magn Res Med 19:470–476.CrossRefGoogle Scholar
  47. 47.
    Edelman RR, Zhao B, Liu C, Wentz KU, Mattle HP, Finn JP, McArdle C (1989) MR angiography and dynamic flow evaluation of the portal venous system. AJR 153:755–760.PubMedGoogle Scholar
  48. 48.
    Lanzer P, Gross G, Nanda N, Pohost G (1990) Timing of data acquisition determines image quality in femoropopliteal phase-sensitive MR angiography. Angiology 41:817–824.PubMedCrossRefGoogle Scholar
  49. 49.
    Masaryk TJ, Modic MT, Ruggieri PM, Ross JS, Laub G, Lenz GW, Tkach JA, Haacke EM, Selman WR, Harik SI (1989) Three dimensional (volume) gradient echo imaging of the carotid bifurcation: preliminary clinical experience. Radiology 171:801–806.PubMedGoogle Scholar
  50. 50.
    Litt AW, Eidelman EM, Pinto RS, Riles TS, McLachlan SJ, Schwartzenberg S, Weinreb JC, Kricheff II (1991) Diagnosis of carotid artery stenosis: comparison of 2DFT time-of-flight MR angiography with contrast angiography in 50 patients. AJR 156:611–616.Google Scholar
  51. 51.
    Pernicone JR, Siebert JE, Potchen EJ, Pera A, Dumoulin CL, Souza SP (1990) Three-dimensional phase-contrast MR angiography in the head and neck: preliminary report. AJR 155:167–176.PubMedGoogle Scholar
  52. 52.
    Masaryk TJ, Modic MT, Ross JS, Ruggieri PM, Laub GA, Lenz GW, Haacke EM, Selman WR, Wiznitzer M, Harik SI (1989) Intracranial circulation: preliminary clinical results with three-dimensional (volume) MR angiography. Radiology 171:793–799.PubMedGoogle Scholar
  53. 53.
    Kim D, Edelman RR, Kent KC, Porter DH, Skillman JJ (1990) Abdominal aorta and renal artery stenosis: evaluation with MR angiography. Radiology 174:727–731.PubMedGoogle Scholar
  54. 54.
    Finn JP, Edelman RR, Jenkins RL, Lewis WD, Longmaid HE, Kane RA, Stokes KR, Mattle HP, Clouse ME (1991) Liver transplantation: MR angiography with surgical validation. Radiology 179:265–269.PubMedGoogle Scholar
  55. 55.
    Edelman RR, Wentz KU, Mattle H, Zhao B, Liu C, Kim D, Laub G (1989) Projection arteriography and venography: initial clinical results with MR. Radiology 172:351–357.PubMedGoogle Scholar
  56. 56.
    Mulligan S, Matsuda T, Lanzer P, Gross GM, Routh WD, Keller FS, Koslin DB, Berland LL, Fields MD, Doyle M, Cranney GB, Lee JY, Pohost GM (1991) Peripheral arterial occlusive disease: prospective comparison of MR angiography and color duplex US with conventional angiography. Radiology 178:695–700.PubMedGoogle Scholar
  57. 57.
    Spritzer CE, Sussman SK, Blinder RA, Saeed M, Herfkens RJ (1988) Deep venous thrombosis evaluation with limited-flip-angle, gradient-refocused MR imaging: preliminary experience. Radiology 166:371–375.PubMedGoogle Scholar
  58. 58.
    Totterman S, Francis CW, Foster TH, Brenner B, Marder VJ, Bryant RG (1990) Diagnosis of femoropopliteal venous thrombosis with MR imaging: a comparison of four MR pulse sequences. AJR 154:175–178.PubMedGoogle Scholar
  59. 59.
    Spritzer CE, Sostman HD, Wilkes DC, Coleman RE (1990) Deep venous thrombosis: experience with gradient-echo MR imaging in 66 patients. Radiology 177:235–241.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • P. Lanzer

There are no affiliations available

Personalised recommendations