Diagnostic DNA Cytometry of the Urothelium

  • A. Böcking


The subjective cytologic examination of urinary sediment by no means offers an ideal solution to the diagnosis of bladder carcinoma:
  • The sensitivity is only 70%, depending on the grade of tumor malignancy.

  • The specificity is only 80%–95% (Murphy et al. 1986; Rübben et al. 1989).

  • The reproducibility of malignancy grading, at approximately 60%–70%, is poor (Ooms et al. 1989).

  • The prognostic relevance of the cytologic tumor grade is not adequate to have a definite impact on treatment planning (Böcking et al. 1990).

  • The prospective biologic behavior of dysplastic cells cannot be accurately predicted.

  • The labor cost is high for the screening of large sample volumes in subjects at risk.


Transitional Cell Carcinoma Urothelial Carcinoma Bladder Carcinoma Urothelial Cell Bladder Cancer Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikens B, Liedtke C-E (1982) Untersuchungen zur Meßbarkeit und Objektivierbarkeit der Urinzytologie durch ein hochauflösendes mikroskopzytophotometrisches Meßsystem. Urologe [A] 21: 98–101Google Scholar
  2. Atkin NB (1971) Modal DNA value and chromosome number in ovarian neoplasias. A clinical and histopathologic assessment. Cancer 27: 1964–1974Google Scholar
  3. Auer GU, Caspersson TO, Wallgren AI (1980) DNA content and survival in mammary carcinoma. Anal Quant Cytol 2: 161–165PubMedGoogle Scholar
  4. Auffermann W, Repges R, Böcking A (1985) Rapid diagnostic DNA-cytometry with an automatic microscope and a TV-image analysis system. Anal Quant Cytol 6: 179–188Google Scholar
  5. Auffermann W, Urquardt M, Rübben H, Wohltmann D, Böcking A (1986) DNA grading of urothelial carcinoma of the bladder. Anticancer Res 6: 27–32PubMedGoogle Scholar
  6. Bachmann P, Hinrichsen K (1979) Principles and methods of quantitative determination of Feulgen stained DNA with the Television Texture Analysis System (TAS). Histochemistry 60: 61–69PubMedGoogle Scholar
  7. Badalament R-A, Gag H, Whitemore WF, Herr HW, Fair WR, Oeltgen HF, Melamed MR (1986) Monitoring intravesical bacillus Calmette-Guerin treatment of superficial bladder carcinoma by serial flow cytometry. Cancer 58: 2751PubMedGoogle Scholar
  8. Badalament R-A, Hermansen DK, Kimmel M, Gay H, Herr HW, Fair W-R, Whitemore WF, Melamed MR (1987) The sensitivity of bladder wash flow cytometry, bladder wash cytology and voided cytology in the detection of bladder carcinoma. Cancer 60: 1423–1427PubMedGoogle Scholar
  9. Badalament R-A, Fair WR, Whitemore WF, Melamed MR (1988) The relative value of cytometry and cytology in the management of bladder cancer: the Memorial Sloan Kettering Cancer Center-experience. Semin Urol 6: 22–30PubMedGoogle Scholar
  10. Barlogie B (1981) Abnormal cellular DNA content as a marker of neoplasia in man. Eur J Cancer Clin Oncol 20: 1123–1125Google Scholar
  11. Barlogie B, Drewinko B, Schumann J (1980) Cellular DNA content as a marker of neoplasia in man. Am J Med 69: 195–203PubMedGoogle Scholar
  12. Bergkvist A, Ljungqvist A, Moberger G (1965) Classification of bladder tumors bases on the cellular pattern. Preliminary report of a clinical pathologic study of 300 cases with a minimum follow up of eight years. Acta ChirScand 130: 371–378Google Scholar
  13. Biesterfeld S, Gerves K, Fischer-Wein G, Böcking A (1992) Euploid polyploidization — a frequent phenomenon in nonneoplastic human tissues. J Clin Pathol (submitted)Google Scholar
  14. Böcking A (1990) DNA-Zytometrie und Automation in der klinischen Diagnostik. In: Bonk U (ed) Aktuelle klinische Zytologie. Beitr. Onkol 38: 298–347Google Scholar
  15. Böcking A, Auffermann W (1986) Algorithm for DNA cytophotometric diagnosis and grading of malignancy. Letter to the editor. Anal Quant Cytol Histol 8: 363PubMedGoogle Scholar
  16. Böcking A, Adler CP, Common HH, Hilgarth M, Granzen B, Auffermann W (1984) Algorithm for a DNA-cytophotometric diagnosis and grading of malignancy. Anal Quant Cytol 6: 1–8PubMedGoogle Scholar
  17. Böcking A, Auffermann W, Jocham D, Contractor H, Wohltmann D (1985) DNA grading of malignancy and tumor regression in prostatic carcinoma under hormone therapy. Appl Pathol 3: 206–214PubMedGoogle Scholar
  18. Böcking A, Chatelain R, Auffermann W, Krüger GRF, Asmus B, Wohltmann D, Schuster C (1986 a) DNA grading of malignant lymphomas I. Prognostic significance reproducibility and comparison with other classifications. Anticancer Res 6: 1205–1215PubMedGoogle Scholar
  19. Böcking A, Chatelain R, Löhr GW, Reif M, Rosner R, Becker H (1986 b) DNA grading of malignant lymphomas II. Correlation with clinical parameters. Anticancer Res 6: 1216–1223Google Scholar
  20. Böcking A, Sanchez L, Stock B, Müller W (1987) Automated DNA cytophotometry. Lab Practice 36: 73–74Google Scholar
  21. Böcking A, Chatelain R, Orthen U, Gien G, Kaikreuth G von, Jocham D, Wohltmann D (1988) DNA grading of prostatic carcinoma: Prognostic validity and reproducibility. Anticancer Res 8: 129–136PubMedGoogle Scholar
  22. Böcking A, Chatelain R, Biesterfeld S, Noll E, Biesterfeld D, Wohltmann D, Goecke C (1989) DNA grading of breast cancer. Prognostic validity, reproducibility and comparison with other classifications. Anal Quant Cytol Histol 11: 73–80PubMedGoogle Scholar
  23. Böcking A, Pollmann I, Biesterfeld S (1990) DNA grading of malignancy in urothelial carcinoma of the bladder: Prognostic validity, reproducibility and comparison with morphological parameters. 17th Meeting of the European Federation of Cytology Societies, 30 March-1 April 1989, Flims, SwitzerlandGoogle Scholar
  24. Böcking A, Chatelain R, Biesterfeld S, Sanchez L, Kropff M, Stock B, Müller W (1992) MIAMED-DNA. Interactive system for rapid diagnostic DNA cytometry. Anal Quant Cytol Histol (submitted for publication)Google Scholar
  25. Böhm N, Sprenger E, Schlüter G, Sandritter W (1968) Proportionalitätsfehler bei der Feulgen-Hydrolyse. Histochemie 15: 194–203PubMedGoogle Scholar
  26. Bretton PR, Herr HW, Kimmel M, Fair WR, Whitemore WF, Melamed MR (1989) Flow cytometry as a predictor of response and progression in patients with superficial bladder cancer treated with bacillus Calmette Guerin. J Urol 141: 1332PubMedGoogle Scholar
  27. Brugal G, Chassery J-M (1977) Un nouveau systeme d’analyse densitometrique et morphologique des preparations microscopiques. Histochemistry 52: 251–258Google Scholar
  28. Brugal G, Quirion C, Vassilakos P (1986) Detection of bladder cancers using a SAMBA 200 cell image processor. Anal Quant Cytol Histol 8: 187–195PubMedGoogle Scholar
  29. Chatelain R, Schunck T, Schindler EM, Schindler AE, Böcking A (1989 a) Diagnosis of prospective malignancy in koilocytic dysplasias of the cervix with DNA cytometry. J Reprod Med 34: 505–510PubMedGoogle Scholar
  30. Chatelain R, Willms A, Biesterfeld S, Auffermann W, Böcking A (1989 b) Automated Feulgen staining with a temperature controlled staining machine. Anal Quant Cytol Histol 11: 211–217PubMedGoogle Scholar
  31. Chin JL, Huben RP, Nava E, Rustum JM, Greco JM, Pantes JE, Frankfurt OS (1985) Flow cytometry analysis of DNA content in human bladder tumors and irrigation fluids. Cancer 56: 1677–1681PubMedGoogle Scholar
  32. Coon GS, Schwartz D, Summers JL, Miller AW, Weinstein RS (1986) Flow cytometric analysis of deparaffined nuclei in urinary bladder carcinoma. Comparison with cytogenetic analysis. Cancer 57: 1594–1601PubMedGoogle Scholar
  33. Cox DR (1972) Regression models and life tables. J Roy Statist Soc B 34: 187–200Google Scholar
  34. Deeley EM (1955) An integrating microdensitometer for biological cells. J Sci Intrum 32: 263–267Google Scholar
  35. Delgado R, Mikum G, Hofstädter F (1984) DNA Feulgencytophotometric analysis of single cells from paraffin-embedded tissue. Pathol Res Pract 179: 92–94PubMedGoogle Scholar
  36. Devonec M, Darzynkiewicz Z, Kostyrka-Claps MC, Collste L, Whitemore WF, Melamed MR (1982) Flow cytometry of low stage bladder tumors: Correlation with cytologic and cystoscopic diagnosis. Cancer 49: 109–118PubMedGoogle Scholar
  37. Farsund T, Hostmark J (1983) Mapping of cell cycle distribution in normal human urinary bladder epithelium. Scand J Urol Hepathol 17: 51–56Google Scholar
  38. Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Z Physiol Chem 135: 203–248Google Scholar
  39. Fossa SD (1975) Feulgen-DNA-values in transitional cell carcinoma of the human urinary bladder. Beitr Pathol 155: 44–55PubMedGoogle Scholar
  40. Fossa SD (1977) DNA variations in neighbouring epithelium in patients with bladder carcinoma. Acta Pathol Microbiol Immunol Scand [A] 85: 603–610Google Scholar
  41. Fossa SD, Kaalhus O (1976 a) Nuclear size and chromatin concentration in transitional cell carcinoma of the human urinary bladder. Beitr Pathol 157: 109–125PubMedGoogle Scholar
  42. Fossa SD, Kaalhus O (1976 b) Computer assisted image analysis of Feulgen stained cell nuclei from transitional cell carcinoma of the human urinary bladder. Acta Pathol Microbiol Immunol Scand [A] 85: 590–602Google Scholar
  43. Fossa SD, Kaalhus O (1985) The prognostic relevance of nuclear Feulgen DNA in transitional cell carcinoma of the urinary bladder. A long-term follow up study. Eur Urol 11: 418–421PubMedGoogle Scholar
  44. Fossa SD, Kaalhus O, Scott-Knudsen O (1977) The clinical and histopathological significance of Feulgen DNA-values in transitional cell carcinoma of the human urinary bladder. Eur J Cancer Clin Oncol 13: 1155–1162Google Scholar
  45. Gahm T, Aikens B (1990) CAESAR — a computer supported measurement system for the enhancement of diagnostics and quality in cytology. Micron Microsc Acta 1/2: 29–55Google Scholar
  46. Graumann W (1953) Zur Standardisierung des Schiffschen Reagens. Z Wiss Mikrosc 61: 225–230Google Scholar
  47. Gustafson H, Tribukait B, Esposti PL (1982a) DNA profile on tumour progression in patients with superficial bladder tumours. Urol Res 10: 13–18PubMedGoogle Scholar
  48. Gustafson H, Tribukait B, Eposti PL (1982b) The prognostic value of DNA analysis in primary carcinoma in situ of the urinary bladder. Scand J Urol Nephrol 16: 141PubMedGoogle Scholar
  49. Hedley DW, Rielander ML, Taylor IW, Rugg CA, Musgrove EA (1983) Method for analysis of cellular DNA-content of paraffin embedded pathological material using flow cytometry. J Histochem Cytochem 31: 1333–1335PubMedGoogle Scholar
  50. Hedley DW, Philips J, Rugg CA, Taylor IW (1984) Measurements of cellular DNA content as an adjunct to diagnostic cytology in malignant effusions. Eur J Cancer Clin Oncol 20: 749–752PubMedGoogle Scholar
  51. Heim S, Mittelman F (1987) Cancer cytogenetics. Liss, New York, pp 239–240Google Scholar
  52. Hofstädter F, Jakse G, Lederer B, Mikuz G, Delgado A (1984) Biological behaviour and DNA cytophotometry of urothelial bladder carcinoma. Br J Urol 56: 289–295Google Scholar
  53. Hostmark JG, Laerum OD, Farsund T (1984) DNA aberrations of bladder mucosa in patients with transitional cell carcinomas. Scand J Urol Nephrol 18: 113–120PubMedGoogle Scholar
  54. Huber JC (1986) Numerische und strukturelle Chromosomenaberrationen bei gynäkologischen Malignomen. Thieme, StuttgartGoogle Scholar
  55. Jitsukava S, Tachibana M, Nakazomo M, Tazaki H, Addonizio JC (1987) Flow cytometry based on heterogeneity index score compared with urine cytology to evaluate their diagnostic efficacy in bladder tumor. Urology 29: 218–222Google Scholar
  56. Klein F, White FKH (1988) Flow cytometry deoxiribonucleic acid determinations and cytology of bladder washing: practical experience. J Urol 139: 275–278PubMedGoogle Scholar
  57. Klein FA, Herr HW, Sogani PC, Whitemore WF, Melamed MR (1982) Detection and follow-up of carcinomas of the urinary bladder by flow cytometry. Cancer 50: 389–395PubMedGoogle Scholar
  58. Koss LG, Bartels PH, Bibbo M, Freed SZ, Taylor J, Wied GL (1975) Computer discrimination between benign and malignant urothelial cells. Acta Cytol 19: 378–391PubMedGoogle Scholar
  59. Koss LG, Bartels PH, Sychra JJ, Wied GF (1978 a) Computer discriminant analysis of atypical urothelial cells. Acta Cytol 22: 382–386PubMedGoogle Scholar
  60. Koss LG, Bartels PH, Sychra JJ, Wied GL (1978b) Diagnostic cytologic sample profiles in patients with bladder cancer using TICAS System. Acta Cytol 22: 392–397PubMedGoogle Scholar
  61. Koss LG, Bartels PH, Wied GL (1980) Computer-based diagnostic analysis of cells in the urinary sediment. J Urol 123: 846–849PubMedGoogle Scholar
  62. Koss L, Eppide EM, Melder KH, Wersto R (1987) DNA cytophotometry of voided urine sediment. Comparison of cytologic diagnosis and image analysis. Anal Quant Cytol Histol 9: 398–404PubMedGoogle Scholar
  63. Lederer B, Mikuz G, Gütter W, Nedden G zur (1972) Cytophotometric investigations of the DNA content of benign and malignant transitional cell tumors of the bladder. Correlation of cytophotometric results with histological grading. Beitr Pathol 147: 379–389PubMedGoogle Scholar
  64. Levi P, Cooper EH, Anderson CK, Patu MC, Williams RE (1969) Analysis of DNA content, nuclear size and cell proliferation of transitional cell carcinoma in man. Cancer 23: 1074–1085PubMedGoogle Scholar
  65. Ley H, Valet G, Lehmer A, Hartung R (1989) Automatic identification of bladder tumor cells by multiple parameters in flow-cytometry. J Urol 141: 294 A (abstract 497)Google Scholar
  66. Marschner S (1992) DNA-Malignitätsgrading des Mammakarzinoms. Prognostische Validität und Reproduzierbarkeit. Dissertation, RWTH AachenGoogle Scholar
  67. Montironi R, Scarpelli M, Pisani E, Ausuini G, Marinelli F, Marizzi G (1985) Noninvasive papillary transitional-cell tumors. Kayometric and DNA-content analysis. Anal Quant Cytol Histol 7: 337–342PubMedGoogle Scholar
  68. Mostofi FK, Sobin LH, Torloni H (1973) Histological typing of urinary bladder tumors. International classification of tumors. WHO, GenevaGoogle Scholar
  69. Murphy WH, Emerson LD, Chandlers RW, Moinuddin SM, Soloway MS (1986) Flow cytometry versus urinary cytology in the evaluation of patients with bladder cancer. J Urol 136: 815–821PubMedGoogle Scholar
  70. Ooms EC, Anderson WA, Alons CL, Boon ME, Veldhiuzen RW (1983) Analysis of the performance of pathologists in the grading of bladder tumors. Hum Pathol 14: 144–150PubMedGoogle Scholar
  71. Parry W, Hemstreet GP (1988) Cancer detection by quantitative fluorescence image analysis. J Urol 139: 270–274PubMedGoogle Scholar
  72. Pauwels RP, Smeets WW, Geraedts JP, Debruyne FM (1987) Cytogenetic analysis in urothelial cell carcinoma. J Urol 137: 210–215PubMedGoogle Scholar
  73. Pauwels RPE, Smeets AWGB, Schapers RWM, Geraedts JPM, Debruyne FMJ (1988) Grading in superficial bladder cancer. Cytogenetic classification. Br J Urol 61: 135–139PubMedGoogle Scholar
  74. Pfitzer P, Vyska K, Stecher G (1976) Analysis of DNA histograms by computer. Beitr Pathol 159: 157–185PubMedGoogle Scholar
  75. Ploem JS (31 8 1989) Das Leitz-MIAC-System; erweiterte Fragestellungen. Arbeitstreffen: Bestandsaufnahme und Perspektiven der Zytoautomation. Institut für Physikalische Elektronik, University of StuttgartGoogle Scholar
  76. Ploem JS, Verwoerd N, Bonnet J, Koper G (1979) An automated microscope for quantitative cytology combining television image analysis and stage scanning microphotometry. J Histochem Cytochem 27: 136–143PubMedGoogle Scholar
  77. Ploem-Zaaijer JJ, Beyer-Boon ME, Leyte-Veldstra L, Ploem JS (1979) Cytofluorometric and cytophotometric DNA measurements of cervical smears stained using a new bicolor method. In: Pressman NJ, Wied GL (eds) Automation of cancer cytology and cell image analysis. Tutorials of Cytology, Chicago, pp 225–235Google Scholar
  78. Ratliff JE, Klein FA, White FKH (1985) Flow cytometry of ethanol-fixed versus fresh bladder barbotage specimens. J Urol 133: 958–960PubMedGoogle Scholar
  79. Roels F (24 2 1990) Personal communication. CAAC-Meeting, BrusselsGoogle Scholar
  80. Rübben H, Rathert P, Roth S, Hofstädter F, Giani G, Terhorst B, Friedrichs R (1989) Exfoliative Urinzytologie, 4th edn. Harnwegstumorregister. Publication of the Fort- und Weiterbildungskommission der Deutschen Urologen. Arbeitskreis Onkologie. Sektion Urinzytologie, EssenGoogle Scholar
  81. Sandberg AA (1986) Chromosomal changes in bladder cancer: clinical and other correlations. Cancer Genet Cytogenet 19: 163–175PubMedGoogle Scholar
  82. Sandritter W (1981) Allgemeine Pathologic Schattauer, StuttgartGoogle Scholar
  83. Sandritter W, Böhm N (1975) DNA in human tumors: a cytophotometric study. Curr Top Pathol 60: 151–219PubMedGoogle Scholar
  84. Sandritter W, Carl M (1966) Cytophotometric measurement of the DNA-content (Feulgen reaction) of malignant human tumors. Acta Cytol 10: 20–30Google Scholar
  85. Seidel A, Sandritter W (1963) Cytophotometrische Messungen des DNS-Gehaltes eines Lungenadenoms und einer malignen Lungenadenomatose. Z Krebsforschung 65: 555–559Google Scholar
  86. Smeets AWGB (1987) Chromosome and flow cytometric studies of urinary bladder cancer. Dissertation, University of MaastrichtGoogle Scholar
  87. Sprenger E (1985) Automation in der Zytodiagnostik. In: Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt eV (DFVLR) (ed) Automation der zytologischen Diagnostik. Verlag TÜV Rheinland, Cologne, pp 7–16Google Scholar
  88. Sprenger W, Hilgarth M, Schaden M (1974) A follow up of doubtful findings in cervical cytology by Feulgen DNA cytophotometry. Beitr Pathol 152: 58–65PubMedGoogle Scholar
  89. Stöckle M, Tanke HG, Mesker WE, Ploem JS, Jonas U, Hohenfellner R (1987) Automated DNA image cytometry: a prognostic tool in urinary bladder carcinoma? World J Urol 5: 127–132Google Scholar
  90. Summers JL, Falor WH, Ward R (1989) A 10-year analysis of chromosomes in non invasive papillary carcinoma of the bladder. J Urol 125: 177–178Google Scholar
  91. Tanke HJ, Ploem JS, Jonas U (1982) Kombinierte Durchflußzytometrie und Bildanalyse zur automatisierten Zytologie von Blasenepithel und Prostata. Aktuel Urol 13: 109Google Scholar
  92. Tanke HJ, Driel-Kulker AMJ van, Cornelisse CJ, Ploem JS (1983) Combined flow cytometry and image cytometry of the same cytological sample. J Microsc 130: 11–22PubMedGoogle Scholar
  93. Tavares AS, Costa J, Maia JC (1973) Correlation between ploidy and prognosis in prostatic carcinoma. J Urol 109: 676–679PubMedGoogle Scholar
  94. Tavares AS, Costa J, Carvalho A de, Reis M (1986) Tumor ploidy and prognosis in carcinomas of the bladder and prostate. Br J Cancer 20: 438–441Google Scholar
  95. Tribukait B, Esposti PL (1978) Quantitative flow-microfluorometric analysis of DNA in cells from neoplasms of the urinary bladder: correlation of aneuploidy with histological grading and cytological findings. Urol Res 6: 197–200PubMedGoogle Scholar
  96. Tribukait B, Gustafson H, Esposti P (1979) Ploidy and proliferation in human bladder tumors as measured by flowcytofluorometric DNA-analysis and its relations to histopathology and cytology. Cancer 43: 1742PubMedGoogle Scholar
  97. Vere White RW de, Deitch AD, West B, Fitzpatrick JM (1988 a) The predictive value of flow cytometric information in the clinical management of stage 0 (Ta) bladder cancer. J Urol 139: 279–282Google Scholar
  98. Vere White RW de, Deitch A, Strand M (1988b) DNA flow cytometry using urine samples: diagnostic accuracy. J Urol 139: 321 AGoogle Scholar
  99. Vindelov LL, Christensen IJ, Nissen NI (1983) A detergenttrypsin method for the preparation of nuclei for flow-cytometric DNA analysis. Cytometry 3: 323PubMedGoogle Scholar
  100. Walker BE (1959) Polyploidy and differentiation in transitional epithelium of mouse urinary bladder. Chromosoma 9: 105–118Google Scholar
  101. Wied GL, Bartels PH, Bahr G, Oldfield DG (1968) Taxonomic intra-cellular analytic system (TICAS) for cell identification. Acta Cytol 12: 180–204PubMedGoogle Scholar
  102. Wied GL, Bartels PH, Dytch HE, Bibbo M (1983) Rapid DNA evaluation in clinical diagnosis. Acta Cytol 27: 33–37PubMedGoogle Scholar
  103. Wright GL, Alexander JP, Konduba AM, Schlossberg SM, Schellhammer PF (1989) Multiparameter flow-cytometric analysis of low grade, low stage bladder washings and voided urin specimens. J Urol 141: 293 AGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. Böcking

There are no affiliations available

Personalised recommendations