Integrable N ≤ O Component Nonlinear Schrödinger Model, Phase Transitions and Supersymmetry

  • O. K. Pashaev
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

Supersymmetry concepts originally introduced in the high-energy physics have recently penetrated in the nuclear physics, condensed matter and statistical mechanics [1], In the last cases anticommuting variables are first introduced for pure combinatorical reasons, to replace the N→0 replica trick. But recently there have been made an attempt to describe the High Temperature Superconductivity (HTSC) and strong correlated electronic systems in general, using symmetry between fermionic and bosonic excitations (hole and spin excitations) [2]. The order parameter in this case can appear in a very sophisticated form as the Grassman constant or the Clifford number. Related to this integrable generalizations of the Ginzburg-Landau model are possible in the form of the vector or matrix Nonlinear Schrödinger Equations (NLSE) with global symmetry in the space of order parameters [3]. The close analogies between antiferromagnetism and superfluidity in the context of classical integrable models have exact meaning in the form of the gauge-equivalence of the Heisenberg model and NLSE.

Keywords

Anisotropy Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. A. Kostelecky, D. K. Campbell (eds.) “Super symmetry in Physics”, Physica D, v. 15, 1985.Google Scholar
  2. [2]
    Z. Zou, P. W. Anderson, Phys. Rev. B37, 1988, 627. P. B. Weigmann, Phys. Rev. Lett. 69, 1988, 821.ADSGoogle Scholar
  3. [3]
    V. G. Makhankov, O. K. Pashaev, Theor. Math. Phys., vol. 53, 1982, 55.MathSciNetGoogle Scholar
  4. [4]
    O. K. Pashaev, Prepr. JINR pl7-89-146, Dubna 1989 and in “Group representations in physics” Proc. of Workshop, Tambov-89, Nauka, Moscow 1990.Google Scholar
  5. [5]
    V. G. Makhankov, R. Myrzakulov and O. K. Pashaev, Lett. Math. Phys., 16, 1988, 83.MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    V. G. Makhankov, O. K. Pashaev, Phys. Lett. A141, 1989, 285 and in “Nonlinear World” Proc. of Workshop Kiev-1989.MathSciNetADSGoogle Scholar
  7. [7]
    O. K. Pashaev “Bäcklund transformations, reduction problem and anisotropic right-invariant Heisenberg models” (to be published) and talk on Brussels Meeting “Aspects of Nonlinear Dynamics: Solitons and Chaos” (Brussels, 6–8 December, 1990).Google Scholar
  8. [8]
    G. Parisi, N. Sourlas, J. Physique-Lettres 41, 1980, L103. A. Y. McKane, Phys. Lett. 76A, 1980, 22.CrossRefGoogle Scholar
  9. [9]
    R. Balian, G. Toulouse, Ann. Phys. 83, 1974, 28.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • O. K. Pashaev
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversita’ di LecceLeccaItaly
  2. 2.Joint Institute for Nuclear ResearchDubnaUSSR

Personalised recommendations