Geometry of Ermakov Systems

  • C. Athorne
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


Ennakov systems are pairs of coupled nonlinear oscillators of the form
$${{{{\rm{d}}^{\rm{2}}}{\rm{x}}} \over {{\rm{d}}{{\rm{t}}^{\rm{2}}}}}{\omega ^2}({\rm{t}}){\rm{x = }}{{\rm{x}}^{{\rm{ - 3}}}}{\rm{f}}\left( {{{\rm{x}} \over {\rm{y}}}} \right),{{{{\rm{d}}^{\rm{2}}}{\rm{y}}} \over {{\rm{d}}{{\rm{t}}^{\rm{2}}}}}{\omega ^2}({\rm{t}}){\rm{y = }}{{\rm{y}}^{{\rm{ - 3}}}}{\rm{g}}\left( {{{\rm{y}} \over {\rm{x}}}} \right)$$
where ω2, f and g are arbitrary functions of their arguments. Such systems were first introduced in [1] and named after V. P. Ermakov who studied the case g=0 [2]. This case includes the so-called Pinney equation [3], f=const, studied in quantum mechanics [4] and nonlinear elasticity [5]. More general types of Ermakov system find application in shallow water wave theory [6] and in nonlinear optics [7].




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. R. Ray and J. L. Reid, Phys. Lett. A 71 (1980) 317.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    V. P. Ermakov, Univ. Isv. Kiev 20 (1880) 1.Google Scholar
  3. [3]
    E. Pinney, Pro. Am. Math. Soc. 1 (1950) 681.MathSciNetMATHGoogle Scholar
  4. [4]
    H. R. Lewis Jr.,J. Math. Phys. 9 (1968) 1976.ADSMATHCrossRefGoogle Scholar
  5. [5]
    M. Shahinpoor and J. L. Nowinski, Int. J. Nonlin. Mech. 6 (1971) 193.MATHCrossRefGoogle Scholar
  6. [6]
    C. Rogers, On a Ermakov system in two-layer, long wave theory: Application of a Noether invariant, Research Report, Dept. Math. Sci. Loughborough (1989).Google Scholar
  7. [7]
    R. A. Lee, J. Phys. A 17 (1984) 535.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    L. M. Berkovich and N. Kh. Rozov, Diff. Eqns. 8 (1972) 1609–12.MATHGoogle Scholar
  9. [9]
    C. Athorne, Stability and periodicity in coupled Pinney equations, Univ. Glasgow, Dept. Math., Preprint No. 89/70.Google Scholar
  10. [10]
    F. Brioschi, Acta Math., 14 (1890) 233.MathSciNetCrossRefGoogle Scholar
  11. [11]
    A. R. Forsyth, Phil. Trans. 179 (1888) 377.ADSMATHCrossRefGoogle Scholar
  12. [12]
    L. M. Berkovich, Factorizatsiya i preobrazovaniya obiknovyennich differentsialnich uravnyeniy, I. S. U. (1989).Google Scholar
  13. [13]
    J. L. Reid and J. R. Ray, J. Math. Phys. 21 (1980) 1583. M. Lutzky, J. Math. Phys. 21 (1980) 1370.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    J. R. Ray, Phys. Lett. 78A (1980) 4. J. R. Ray, J. L. Reid and M. Lutzky, Phys. Lett. 84A (1981) 42.Google Scholar
  15. [15]
    J. Goedert, Phys. Let. A 136 (1989) 391.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J. Douglas, Trans. Am. Math. Soc. 50 (1941) 71.CrossRefGoogle Scholar
  17. [17]
    V. I. Arnold, Mathematical methods of classical mechanics, Springer (1978).Google Scholar
  18. [18]
    C. Athorne, C. Rogers, U. Ramgulam and A. Osbaldestin, Phys. Lett. A 143 (1990) 207.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    C. Athorne, Rational Ermakov systems of Fuchsian type, Univ. Glasgow, Dept. Math., Preprint.Google Scholar
  20. [20]
    W. Magnus and S. Winkler, Hill’s equation, Dover (1979).Google Scholar
  21. [21]
    C. Athorne, J. Phys. A 23 (1990) L137.MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. R. Forsyth, Theory of differential equations, vol IV, C. U. P. (1902).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • C. Athorne
    • 1
  1. 1.Department of MathematicsUniversity of GlasgowGlasgowUK

Personalised recommendations