Localized Waves in N + 1 Dimensions

  • A. Degasperis
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


We give a method of costructing nonlinear Schroedinger equations in N+l dimensions, which are similar to the Davey-Stewartson equation as they are coupled to an additional scalar field, and possess, by construction, solutions describing interacting soliton-like objects.


Separability Condition Nonlinear Evolution Equation Nonlinear Partial Differential Equation Schroedinger Equation Envelope Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Degasperis and P. CSabatier, Phys. Lett. A (to be published).Google Scholar
  2. [2]
    P. C. Sabatier “Quest of multidimensional nonlinear equations with exponentially confined solutions”, in Inverse Problems 6, L29–L32 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    P. CSabatier “Multidimensional nonlinear Schroedinger equations with exponentially confined solutions” to be published in Inverse Problems 6, 1990.Google Scholar
  4. [4]
    F. Calogero and S. De Lillo, Inverse Problems 3, 633–681 (1987), and F. Calogero in “What is integrability (for nonlinear PDEs)?”, V. E. Zakharov (ed.), Springer 1988.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Boiti, J. J. P. Leon, L. Martina and F. Pempinelli, Phys. Lett. A 132, 432–439 (1988); A. S. Fokas and P. M. Santini, Phys. Rev. Lett. 63, 1329-1333 (1989).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    P. M. Santini, Physica D 41, 26–54 (1990); A. S. Fokas and P. M. Santini, Physica D (to be published); M. Boiti, J. J. P. Leon and F. Pempinelli “Bifurcations of Solitons in Multidimensions”, preprint Lecce University, 1990; J. Hietarinta and R. Hirota, Phys. Lett. A 145, 237 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    A. S. Fokas and M. J. Ablowitz, J. Math. Phys. 25, 2494 (1984); M. Boiti, J. J. P. Leon, F. Pempinelli Phys. Lett. A 141, 96 (1989) and Phys. Lett. A 141, 101 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    A. Degasperis, in “Inverse methods in action”, P. C Sabatier (ed.), Springer-Verlag, Berlin 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • A. Degasperis
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità “La Sapienza”RomaItaly
  2. 2.Instituto Nazionale di Fisica NucleareSezione di RomaItaly

Personalised recommendations