Skip to main content

A New Class of Generalized Inverses for the Solution of Discretized Euler — Lagrange Equations

  • Conference paper
Real-Time Integration Methods for Mechanical System Simulation

Part of the book series: NATO ASI Series ((NATO ASI F,volume 69))

Abstract

For a wide class of mechanical systems, so-called multibody systems, there are highly developed methods for the automatic generation of the corresponding equations of motion. As these equations can be stated in various, equivalent forms the question which of these forms are best suited for numerical treatment has become an important topic of research in computational mechanics.

The discrete versions of these formulations lead to nonlinear algebraic equations, which, in the presence of truncation error and rounding errors, are not equivalent. In this paper a general framework for comparing these alternative formulations will be given based on identifying with each a certain generalized solution of an overdetermined set of algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Baumgarte.: Stabilization of constraints and integrals of motion, in dynamical systems. Comp. Meth. in Appl. Mechanics, 1:1–16, 1972.

    Google Scholar 

  2. K.E. Brenan, S.L. Campbell, and L.R. Petzold.: The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. North Holland Publishing Co., 1989.

    Google Scholar 

  3. H. Brandl, R. Johanni, and M. Otter.: An Algorithm for the Simulation of Multibody Systems With Kinematic Loops. In Proc. IFAC/IFIP/IMACS International Symposium on The Theory of Robots, Vienna, Austria, Dec 1986.

    Google Scholar 

  4. S.L. Campbell and B. Leimkuhler.: Differentiation of constraints in differential- algebraic equations. In E. Haug and R. Deyo, editors, NATO Advanced Research Workshop on Real-Time Integration Methods for Mechanical System Simulation, Springer, Heidelberg, to appear 1990.

    Google Scholar 

  5. J.E. Dennis and R.B. Schnabel.: Numerical Methods for Unconstrained Optimization and Nonlinear Equation. Prentice-Hall, Englewood Cliffs, 1983.

    Google Scholar 

  6. C. Führer and B. Leimkuhler.: Formulation and Numerical Solution of the Equations of Constrained Mechanical Motion. Technical Report DFVLR-FB 89–08, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt (DFVLR), D-5000 Köln 90, 1989.

    Google Scholar 

  7. C. Führer and B. Leimkuhler.: Numerical solution of differential-algebraic equations for constrained mechanical motion. Numerische Mathematik, submitted for publication 1989.

    Google Scholar 

  8. C. Führer. Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen. PhD thesis, Mathematisches Institut, Technische Universität München, 1988.

    Google Scholar 

  9. C.W. Gear.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971.

    MATH  Google Scholar 

  10. C.W. Gear, G.K. Gupta, and B.J. Leimkuhler.: Automatic integration of the Euler-Lagrange equations with constraints. J. Comp. Appl. Math., 1213: 77–90, 1985.

    Article  MathSciNet  Google Scholar 

  11. G.H. Golub and C.F. Loan van.: Matrix Computations. The John Hopkins University Press, Baltimore, 1983.

    MATH  Google Scholar 

  12. E. Haug and J. Yen.: Implicit numerical integration of constrained equations of motion via generalized coordinate partitioning. In E. Haug and R. Deyo, editors, NATO Advanced Research Workshop on Real-Time Integration Methods for Mechanical System Simulation, Springer, Heidelberg, to appear 1990.

    Google Scholar 

  13. G.P. Ostermeyer.: Baumgarte stabilization for differential-algebraic equations. In E. Haug and R. Deyo, editors, NATO Advanced Research Workshop on Real-Time Integration Methods for Mechanical System Simulation, Springer, Heidelberg, to appear 1990.

    Google Scholar 

  14. L.R. Petzold.: A description of DASSL: a differential/ algebraic system solver. In Proc. 10th IMACS World Congress, August 8–13 Montreal 1982, 1982.

    Google Scholar 

  15. W. Rulka.: SIMPACK, Ein Rechenprogramm zur Simulation von Mehrkörpersystemen mit grossen Bewegungen. In Proc. Finite Elemente in der Praxis, Computergestütztes Berechnen und Konstruieren, pages 206–245, T-PROGRAMM GMBH, P.O. Box 1444 D-7410 Reutlingen, 1989.

    Google Scholar 

  16. R. Schwertassek and W. Rulka.: Aspects of Efficient and Reliable Multibody System Simulation. In E. Haug and R. Deyo, editors, NATO Advanced Research Workshop on Real-Time Integration Methods for Mechanical System Simulation, Springer, Heidelberg, to appear 1990.

    Google Scholar 

  17. J.W. Starner.: A Numerical Algorithm for the Solution of Implicit Algebraic- Differential Systems of Equations. PhD thesis, University of New Mexico, 1976.

    Google Scholar 

  18. R.A. Wehage and E.J. Haug.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J.Mech.Design, 134: 247–255, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Führer, C., Leimkuhler, B. (1990). A New Class of Generalized Inverses for the Solution of Discretized Euler — Lagrange Equations. In: Haug, E.J., Deyo, R.C. (eds) Real-Time Integration Methods for Mechanical System Simulation. NATO ASI Series, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76159-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76159-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76161-4

  • Online ISBN: 978-3-642-76159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics