Biomechanics in the Enamel of Mammalian Teeth

  • Wighart von Koenigswald
  • Hans Ulrich Pfretzschner


The formation of mammalian enamel is strictly determined genetically but yields important functional adaptations on the levels of gross morphology and micro-structure. Differentiation of enamel thickness is frequently found in hypsodont teeth of smaller and medium-sized mammals. It is mainly due to the position on the leading or trailing edge. In the enamel microstructure, the Schmelzmuster, defined as a specific combination of different enamel types, again shows a close relationship to the leading or trailing edge especially in small mammals. The various enamel types, defined by prism orientation, have different functional meanings. Some, like Hunter-Schreger bands, reinforce enamel to resist tensile forces and possess crack-stopping properties as well. In hypsodont molars of larger mammals, specific stresses occur near the enamel-dentine junction. The characteristic modified radial enamel found in this region is regarded as a special adaptation to these stresses. Modified radial enamel evolved convergently in several lineages. Because enamel types are mainly functionally determined, the taxonomical value of enamel structures is largely restricted to the level of Schmelzmuster.


Stress Pattern Tooth Enamel Enamel Thickness Mammalian Tooth Enamel Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertrand P (1988) Evolution de la structure de l’email chez les Proboscidea primitifs: aspect phylogenetique et fonctionelle. In: Russell DE, Santoro JP, Sigogneau-Russell D (eds) Teeth revisited. Proc 7th Int Symp on Dental Morphology, Paris 1986. Mem Mus Nat Hist Nat, Paris (C) 53:109–124Google Scholar
  2. Boyde A (1964) The structure and development of mammalian enamel. PhD Thesis, University of London, LondonGoogle Scholar
  3. Boyde A (1969) Electron microscopic observations relating to the nature and development of prisms decussation in mammalian dental enamel. Bull Group Int Rech Sc Stomat 12:151–207Google Scholar
  4. Boyde A (1976) Enamel structure and cavity margins. Operat Dent 1:13–28, 25 figsGoogle Scholar
  5. Boyde A (1978) Development of the structure of the enamel of the incisor teeth in the three classical subordinal groups of the Rodentia. In: Butler PM, Joysey KA (eds) Development, function and evolution of teeth. Academic Press, London New York, pp 43–58Google Scholar
  6. Fortelius M (1985) Ungulate cheek teeth: developmental functional and evolutionary interrelations. Acta Zool Fenn 180:1–76, 43 figsGoogle Scholar
  7. Greaves WS (1973) The interference of jaw motion from tooth wear facets. J Paleontol 47:1000–1001, 1 figGoogle Scholar
  8. Ishiyama M (1984) Comparative histology of tooth enamel in several-toothed whales. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 432–436, 8 figsGoogle Scholar
  9. Ishiyama M (1987) Enamel structure in odontocete whales. Scann Microsc 1/3:1071–1079, 27 figsGoogle Scholar
  10. Koenigswald W von (1977) Mimomys cf. reidi aus der villafranchischen Spaltenfüllung Schambach bei Treuchtlingen. Mitt Bayer Staatssamml Paläontol Hist Geol 17:197–212, 40 figsGoogle Scholar
  11. Koenigswald W von (1980) Schmelzmuster und Morphologie in den Molaren der Arvicolidae (Rodentia). Abh Senckenb Naturforsch Ges 539:1–129, 136 figsGoogle Scholar
  12. Koenigswald W von (1982) Enamel structure in molars of Arvicolidae (Rodentia, Mammalia), a key to functional morphology and phylogeny. In: Kurten B (ed) Teeth: form, function and evolution. Columbia Univ Press, New York, pp 109–122, 7 figsGoogle Scholar
  13. Koenigswald W von (1988) Enamel modification in enlarged front teeth among mammals and the various possible reinforcement of the enamel. In: Russell DE, Santoro JP, Sigogneau-Russel D (eds) Teeth revisited. Proc 7th Int Symp Dental Morphology, Paris 1986. Mem Mus Nat Hist Nat (C) 53:148–165Google Scholar
  14. Koenigswald W von (1990) Die Palökologie der Apatemyiden, Ausdeutung der Skelettfunde von Hete-rohyus nanus aus dem Mitteleozän bei Darmstadt. Palaeontolographica 210:41–77, 21 figs, 4 tabsGoogle Scholar
  15. Koenigswald W von (1990 a) Ein ungewöhnliches Schmelzmuster in den Schneidezähnen von Marmo-ta (Rodentia, Mammalia). N Jahrb Geol Paläontol 180:53–73, 14 figs.Google Scholar
  16. Koenigswald W von, Pascual R (1990) The Schmelzmuster of the Paleogene South American rodentlike marsupials Groeberia and Patagonia compared to rodents and other Marsupialia. Paläontol Z 64:345–358, 11 figs.Google Scholar
  17. Koenigswald W von, Pfretzschner HU (1987) Hunter-Schreger-Bänder im Zahnschmelz von Säugetieren: Anordnung und Prismenverlauf. Zoomorphology 106:329–338, 17 figsCrossRefGoogle Scholar
  18. Koenigswald W von, Rensberger JM, Pfretzschner HU (1987) Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature (London) 328:150–152, 2, 4 figsCrossRefGoogle Scholar
  19. Lester KS, Hand SJ, Vincent F (1988) Adult phyllostomid (bat) enamel by scanning electron microscopy — with a note on dermopteran enamel. Scand Electron Microsc 2, 1:371–383, 38 figsGoogle Scholar
  20. Martin L, Boyde A, Grine FE (1988) Enamel structure in primates: a review of SEM studies. Scann Microsc 2, 3:1503–1526Google Scholar
  21. Pfretzschner HU (1988) Structural reinforcement and crack propagation in enamel. In: Russell DE, Santoro JP, Sigogneau-Russell DE (eds) Teeth revisited. Proc 7th Int Symp Dental Morphology, Paris 1986. Mem Mus Nat Hist Nat (C) 53:133–143Google Scholar
  22. Pfretzschner HU (in press) Biomechanik der Schmelzmikrostruktur in den Backenzähnen von Großsäugern. PalaeontolographicaGoogle Scholar
  23. Rensberger JM, Koenigswald W von (1980) Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6/4:477–495, 17 figsGoogle Scholar
  24. Sahni A (1981) Enamel ultrastructure of fossil mammalia: Eocene Archaeoceti from Kutch. J Palaeontol Soc India 25:33–37, 2 platesGoogle Scholar
  25. Stern D, Crompton AW, Skobe Z (1989) Enamel ultrastructure and masticatory function in molars of the American opossum, Didelphis virginiana. Zool Linnean Soc 95:311–334, 11 figsCrossRefGoogle Scholar
  26. Young WG, McGowan M, Daley TJ (1987) Tooth enamel structure in the koala, Phascolarctos cinereus: some functional interpretations. Scann Miicrosc 1, 4:1925–1934, 4 tabs, 9 figsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Wighart von Koenigswald
  • Hans Ulrich Pfretzschner
    • 1
  1. 1.Institut für PaläontologieUniversität BonnBonn 1Germany

Personalised recommendations