Skip to main content

Ontogenetic Changes Reflected in the Morphology of the Molluscan Shell

  • Conference paper
Constructional Morphology and Evolution

Summary

The course of ontogeny finds its reflection in the shape and structure of the molluscan shell. The shell becomes mineralized after it has first been secreted. The type of embryonic development is imprinted on the shape of the first mineralized shell and its course can be reconstructed from this shape in modern and fossil cephalopods. The place in the environment causes a reaction in morphology. Gastropod limpets clinging to hard substrates thus have developed in many convergent lines starting out from ancestors that withdrew into their shell. When the later portion of life deviates from that of the ancestors, this may be reflected onto earlier portions of the ontogeny or not. The uncoiled Caecidae may have helically coiled, planspiral, or decoiled larval shells and secondarily coiled caecids may or may not revers this tendency. Larval life in the plankton follows very different pathways of adaptation than adult life in the benthos, as is documented with some mesogastropods. Both adaptations have to be fitted into the same life cycle; but when the life cycle takes a short cut, a major change may be the result, as in the pteropods. It is not easy to differentiate between changes that can be reversed and others that are final. Sometimes pathological cases illustrate a possible way in which phylogeny proceeded, as is demonstrated in an atavistic bivalve embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold JM (1987) Reproduction and embryology of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus — biology and paleobiology of a living fossil. Plenum, New York London, pp 353–372

    Google Scholar 

  • Arnold JM, Landman NH, Mutvei H (1987) Development of the embryonic shell of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus the biology and paleobiology of a living fossil. Plenum, New York London, pp 373–400

    Google Scholar 

  • Bandel K (1975a) Entwicklung der Schale im Lebenslauf zweier Gastropodenarten; Buccinum undatum and Xancus angulatus (Prosobranchier, Neogastropoda). Biomineralisation 8:67–91

    Google Scholar 

  • Bandel K (1975b) Embryonalgehäuse karibischer Meso- und Neogastropoden (Mollusca). Akad Wiss Lit Abh Math Naturwiss Kl 1975 (1):1–133

    Google Scholar 

  • Bandel K (1976a) Observations on spawn, embryonic development, and ecology of some Caribbean lower Mesogastropoda (Mollusca). Veliger 18:249–271

    Google Scholar 

  • Bandel K (1976b) Die Gelege karibischer Vertreter aus den Überfamilien Strombacea, Naticacea und Tonnacea (Mesogastropoden, Mollusca). Mitt Inst Colombo Aleman Invest Cient Santa Marta (Columbia), Gießen 8:105–139

    Google Scholar 

  • Bandel K (1977a) Die Herausbildung der Schraubenschicht bei Pteropoden. Biomineralisation 9:28–47

    Google Scholar 

  • Bandel K (1977b) Übergänge von der Perlmutter-Schicht zu prismatischen Schichttypen bei Mollusken (Transitions from the nacreous layer to prismatic type layers in molluscs). Biomineralisation 9:28–47

    Google Scholar 

  • Bandel K (1979a) Übergänge von einfacheren Strukturtypen zur Kreuzlamellenstruktur bei Gastropodenschalen. Biomineralisation 10:9–37

    Google Scholar 

  • Bandel K (1979b) The nacreous layer in the shell of the gastropod family Seguenziidae and its taxonomic significance. Biomineralisation 10:49–61

    Google Scholar 

  • Bandel K (1981a) Struktur der Molluskenschale im Hinblick auf ihre Funktion. Paläontol Kursbücher 1:25–48

    Google Scholar 

  • Bandel K (1981b) The structure and formation of the siphuncular tube of Quenstedtoceras compared with that of Nautilus (Cephalopoda). N Jahrb Geol Paläontol Abh 161:153–171

    Google Scholar 

  • Bandel K (1982) Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7:1–198

    Article  Google Scholar 

  • Bandel K (1985) Composition and ontogeny of Dictyoconites (Aulacocerida, Cephalopoda). Paläontol Z 59:223–244

    Google Scholar 

  • Bandel K (1986a) The ammonitella: a model of formation with the aid of the embryonic shell of archaeogastropods. Lethaia 19:171–180

    Article  Google Scholar 

  • Bandel K (1986b) The reconstruction of “Hyolithes kingi” as annelid worm from the Cambrian of Jordan. Mitt Geol Paläontol Inst Univ Hamburg 61:35–101

    Google Scholar 

  • Bandel K (1988) Stages in the ontogeny and a model of the evolution of bivalves (Mollusca). Paläontol Z 62:217–254

    Google Scholar 

  • Bandel K (1990 a) Shell structure of the Gastropoda excluding Archaeogastropoda. In: Carter JG (ed) Skeletal biomineralization: patterns, processes, and evolutionary trends. Van Nostrand Reinhold, New York, pp 117–134

    Google Scholar 

  • Bandel K (1990b) Cephalopod shell structure and general mechanisms of shell formation. In: Carter JG (ed) Skeletal biomineralization: patterns, processes, and evolutionary trends. Van Nostrand Reinhold, New York, pp 97–115

    Google Scholar 

  • Bandel K (in preparation a) Allogastropoden aus der triassischen St. Cassian Formation (Gastropoda, Dolomiten)

    Google Scholar 

  • Bandel K (in preparation b) Trochoidea aus der triassischen St. Cassian Formation (Gastropoda, Dolomiten)

    Google Scholar 

  • Bandel K, Boletzky S von (1979) A comparative study of structure, development and morphological relationships of chambered cephalopod shells. Veliger 21:313–354

    Google Scholar 

  • Bandel K, Boletzky S von (1988) Features of development and functional morphology required in the reconstruction of early coleoid cephalopods. In: Wiedmann J, Kullmann J (eds) Cephalopods — present and past. Schweizerbart, Stuttgart, pp 209–246

    Google Scholar 

  • Bandel K, Almogi-Labin A, Hemleben C, Deuser WG (1984a) The conch of Limacina and Peraclis (Pteropoda) as a model for the evolution of planktonic gastropods. N Jahrb Geol Paläontol Abh 168:87–107

    Google Scholar 

  • Bandel K, Engeser T, Reitner J (1984b) Die Embryonalentwicklung von Hibolithes (Belemnitida, Cephalopoda). N Jahrb Geol Paläontol Abh 167:275–303

    Google Scholar 

  • Bandel K, Hemleben C (1975) Anorganisches Kristallwachstum bei lebenden Mollusken. Paläontol Z 49:298–320

    Google Scholar 

  • Bandel K, Hemleben C (1987) Jurassic heteropods and their modern counterparts (planktonic Gastropoda, Mollusca). N Jahrb Geol Palaontol Abh 174:1–22

    Google Scholar 

  • Bandel K, Hemleben C (1990) Observation on the ontogeny of the thecosomate pteropods during cruise 5/5 of the Meteor in the southern Red Sea substituted by observations from Bermuda (in preparation)

    Google Scholar 

  • Bandel K, Kulicki C (1988) Belemnoteuthis polonica: a belemnite with an aragonitic rostrum. In: Wiedmann J, Kullmann J (eds) Cephalopods — present and past. Schweizerbart, Stuttgart, pp 303–316

    Google Scholar 

  • Bandel K, Reitner J, Stürmer W (1983) Coleoids from the Lower Devonian Black Slate (“Hunsrück-Schiefer”) of the Hunsrück (West Germany). Neues Jahrb Geol Palaont Abh

    Google Scholar 

  • Bandel K, Stanley GD (1989) Reconstruction and biostratinomy of Devonian Cephalopods (Lamellor-thoceratidae) with unique cameral deposits. Senckenb Lethaea 69:391–437

    Google Scholar 

  • Bandel K, Wedler E (1987) Hydroid, amphineuran and gastropod zonation in the littoral of the Caribbean Sea, Colombia. Senckenb Mar 19:1–129

    Google Scholar 

  • Bandel K, Hain S, Riedel F, Tiemann H (1990) Limacosphaera, an unusual mesogastropod larva of the Weddell Sea (Antarctica). Nautilus (in press)

    Google Scholar 

  • Beu AG, Maxwell PA (1990) Cenozoic Mollusca of New Zealand. Drawings by RC Brazier. NZ Geol Surv Paleontol Bull 58:1–518

    Google Scholar 

  • Biggelaar JAM van den (1977) Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. J Morphol 154:157–186

    Article  PubMed  Google Scholar 

  • Biggelaar JAM van den, Serras F (1988) Determinative decisions and dye-coupling changes in the molluscan embryo. Gap junctions. Liss, New York, pp 483–493

    Google Scholar 

  • Biggelaar JAM van, Dorresteijn AWC, de Laat SW, Bluemink JG (1981) The role of topographical factors in cell interaction and determination of cell lines in Molluscan development. Int Cell Biol 1980–1981:526–538

    Article  Google Scholar 

  • Boletzky S von (1974) The “larvae” of Cephalopoda: a review. Thalassia Jug 10:45–76

    Google Scholar 

  • Erben HK, Flajs G (1975) Über die Cicatix der Nautiloideen. Mitt Geol Palaontol Inst Univ Hamburg 44:59–68

    Google Scholar 

  • Gilmer RW, Harbison GR (1986) Morphology and field behavior of pteropod molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Mar Biol 91:47–57

    Article  Google Scholar 

  • Hansen TA (1980) Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193–207

    Google Scholar 

  • Haszprunar G (1985) Zur Anatomie und systematischen Stellung der Architectonicidae (Mollusca, Allogastropoda). Zool Scr 14:25–43

    Article  Google Scholar 

  • Haszprunar G (1988) On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J Mollusc Stud 54:367–441

    Article  Google Scholar 

  • Hoagland KE (1984) Use of molecular genetics to distinguish species of the gastropod genus Crepidula. Malacologia 25:607–628

    Google Scholar 

  • Jablonski D, Lutz R (1983) Larval ecology of marine benthic invertebrates: paleobiological implications. Biol Rev 58:21–89

    Article  Google Scholar 

  • Jackson JBC (1974) Biogeographic consequences of eurytopy and stenotypy among marine bivalves and their evolutionary significance. Am Nat 108:541–560

    Article  Google Scholar 

  • Jagersten G (1972) Evolution of the Metazoan life cycle. Academic Press, New York London, 282 pp

    Google Scholar 

  • Jeletzky JA (1966) Comparative morphology, phylogeny, and classification of fossil coleoidea. Univ Kansas Paleontol Contrib Mollusca, Art 7:1–162

    Google Scholar 

  • Kollmann HA, Yochelson EL (1976) Survey of Paleozoic gastropods possibly belonging to the subclass Opisthobranchia. Naturhist Mus Wien Ann 80:207–220

    Google Scholar 

  • Landman NH, Bandel K (1985) Internal structures in the early whorls of Mesozoic ammonites. Am Mus Nov 2823:1–21

    Google Scholar 

  • Moor B (1978) Die Embryonalschale von Theba carthusiana Müller (Gastropoda, Pulmonata, Stylommatophora). Ein Beispiel milieuabhangiger Variation der Schalenform. Zool Anz Jena 201:353–363

    Google Scholar 

  • Penchaszadeh P (1981) A peculiar development pattern in Tonna galea from Venezuela. Int J Invertebrate Reprod Dev 4:209–212

    Google Scholar 

  • Pilkington MC (1974) The eggs and hatching stages of some New Zealand prosobranch Molluscs. J R SocNZ 1974 (4):411–431

    Article  Google Scholar 

  • Riedel F (1990) Die Bedeutung der Embryonalschale für die systematische Einstufung rezenter und fossiler Süßwasserschnecken. Masters Thesis, Univ Hamburg

    Google Scholar 

  • Scheltema RS (1971) Larval dispersal as means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol Bull 140:284–322

    Article  Google Scholar 

  • Simroth H (1895) Die Gastropoden der Plankton-Expedition. Ergeb Planktonexped Humboldt Stift 2:1–206

    Google Scholar 

  • Skelton PW (1985) Preadaptation and evolutionary innovation in rudist bivalves. In: Cope JCW, Skelton PW (eds) Evolutionary case histories from the fossil record. Spec Pap Palaeontology 33

    Google Scholar 

  • Strathmann RR (1978) Progressive vacating of adaptive types during the Phanerozoic. Evolution 32:907–914

    Article  Google Scholar 

  • Strathmann RR (1985) Feeding and nonfeeding larval development and lifehistory evolution in marine invertebrates. Annu Rev Ecol Syst 16:339–361

    Article  Google Scholar 

  • Thorson G (1946) Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the Sound. Meddr Komm Dan Fisk Og Havunders Ser Plankton 4:1–523

    Google Scholar 

  • Warén A (1984) A generic revision of the family Eulimidae (Gastropoda, Prosobranchia). J Mollusc Stud Suppl 13:96 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bandel, K. (1991). Ontogenetic Changes Reflected in the Morphology of the Molluscan Shell. In: Schmidt-Kittler, N., Vogel, K. (eds) Constructional Morphology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76156-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76156-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76158-4

  • Online ISBN: 978-3-642-76156-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics