Skip to main content

Annexin I and its Biochemical Properties

  • Chapter
Novel Calcium-Binding Proteins

Abstract

Signal transduction triggered by ligand-receptor interaction often induces interaction of transmembrane proteins with the cytoskeletal net work at the inner surface of cell membranes. It is well known that many cytoplasmic proteins bind to phospholipid liposomes or the inner surface of plasma membranes and the interaction induces physicochemical changes in the membranes (Utsumi et al. 1981, 1982; Okimasu et al. 1982, 1986, 1987; Noboriet al. 1987). In some cases, phosphoinositides in plasma membranes are hydrolyzed and diacylglycerol (DG) is transiently produced during ligand receptor interaction (Berridge 1984). These DG and IP3 activate proteinkinase C (PKC) (Nishizuka 1984) and increase intracellular calcium levels by releasing calcium from intracellular stores (Berridge and Irvine 1984). In this case, it has been demonstrated that DG increases the affinity of PKC for Ca2+ (Takai et al. 1979), and enhances the binding of the enzyme to phospholipids of plasma membranes, such as phosphatidylserine (PS), phosphatidic acid (PA), and cardiolipin (CL), by way of exposing its hydrophobic amino acid residues. No such interaction occurs with liposomes composed of uncharged phospholipids, such as phosphatidylcholine (PC) (Konig et al. 1985). Thus, the physicochemical nature of the constituent phospholipids is important for specific interaction of PKC with membranes leading to its activation: different physical forms of synthetic phospholipid vesicles or multilamellar vesicles are differentially capable of complying with the phospholipid requirement of PKC (Boni and Rando 1985). Besides PKC, other proteins such as protease (Inoue et al. 1977), actinin (Rotman et al. 1982), thrombin (Le Compte et al. 1984) and lipocortins (Sato et al. 1987) are known to be activated by interacting with phospholipids. These observations indicate that the interaction of these cytoplasmic proteins with the inner surface of plasma membranes plays a critical role in signal transduction that modulates cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn NG, Bienkowski MJ, McMullen BA, Lipkin EW, Haen CD (1988) Sedimentation equilibrium analysis of five lipocortin-related phospholipase A2 inhibitors from human placenta. J Biol Chem 263:18657–18663.

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360.

    PubMed  CAS  Google Scholar 

  • Berridge MJ and Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Bienkowski MJ, Petro MA, Robinson LJ (1989) Inhibition of thromboxian synthesis in U937 cells by glucocorticoids. J Biol Chem 264:6536–6544.

    PubMed  CAS  Google Scholar 

  • Binsbergen JV, Slotboom AJ, Aarsnab AJ, deHass GH (1989) Synthetic peptide from lipocortin I has no phospholipase A2 inhibitory activity. FEBS Lett 247:293–297.

    Article  PubMed  Google Scholar 

  • Blanquet PR, Paillard S, Courtois Y (1988) Influence of fibroblast growth factor on phosphorylation and activity of a 34 kDa lipocortin-like protein in bovine epithelial lens cells. FEBS Lett 229:183–187.

    Article  PubMed  CAS  Google Scholar 

  • Boni LY and Rando RR (1985) The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. J Biol Chem 260:10819–10825.

    PubMed  CAS  Google Scholar 

  • Cirino G, Flower RJ, Browning JL, Sinclair LK, Pepinksy RB (1987) Recombinant human lipocortin I inhibits thromboxan release form guinea-pig isolated perfused lung. Nature 328:270–272.

    Article  PubMed  CAS  Google Scholar 

  • Cirino G, Peers SH, Flower RJ, Browning JL, Pepinsky RB (1989) Human recombinant lipocortin I has acute local anti-inflammatory properties in the rat paw edema test. Proc Natl Acad Sci USA 86:3428–3432.

    Article  PubMed  CAS  Google Scholar 

  • Clark MA, Littlejohn D, Conway TM, Mong S, Steiner S, Crooke ST (1986) Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity. J Biol Chem 261:10713–10718.

    PubMed  CAS  Google Scholar 

  • Cohen S and Fava RA (1985) Internalization of functional epidermal growth factor: receptor/kinase complexes in A-431 cells. J Biochem 260:12351–12358.

    CAS  Google Scholar 

  • Cornera C, Rothhut B, Cavadore J, Vilgrain I, Cochet C, Chambaz E, Russo-Marie F (1989) Further characterization of four lipocortins from human peripheral blood mononuclear cells. J Cell Biochem 40:361–370.

    Article  Google Scholar 

  • Cooper JA and Hunter T (1982) Discrete primary location of tyrosine protein kinase and of three proteins that contain phosphotyrosine in virally transformed chick fibroblasts. J Cell Biol 94:287–296.

    Article  PubMed  CAS  Google Scholar 

  • Creutz CE, Zaks WJ, Hamman HC, Crane S, Martin WH, Gould KL, Oddie KM, Parsons SJ (1987) Identification of chromaffin granule-binding proteins. J Biol Chem 262:1860–1868.

    PubMed  CAS  Google Scholar 

  • Crompton MR, Owens RJ, Totty NF, Moss SE, Waterfield MD, Crumpton MJ (1988) Primary structure of the human, membrane-associated Ca2+-binding protein p68 a novel member of a protein family. EMBO J 7:21–27.

    PubMed  CAS  Google Scholar 

  • Davidson EF, Dennis EA, Powell M, Glenney JR (1987) Inhibition of phospholipase A2 by “Lipocortins” and calpactins. An effect of binding to substrate phospholipids. J Biol Chem 262:1698–1705.

    PubMed  CAS  Google Scholar 

  • De BK, Misono KS, Lukas TJ, Moroczkowski B, Cohen S (1986) A calcium-dependent 35-kilodalton substrate for epidermal growth factor receptor/kinase isolated from normal tissue. J Biol Chem 261:13784–13792.

    PubMed  CAS  Google Scholar 

  • Fava RA and Cohen S (1984) Isolation of a calcium-dependent 35-kilodalton substrate for the epidermal growth factor receptor/kinase from A-431 cells. J Biol Chem 259:2636–2645.

    PubMed  CAS  Google Scholar 

  • Funakoshi T, Heirmark RL, Hendrikson LE, McMullen BA, Fujikawa K (1987) Human placental anticoagulant protein: isolation and characterization. Biochemistry 26:5572–5578.

    Article  PubMed  CAS  Google Scholar 

  • Geisow MJ, Fritsche U, Hexham JM, Dash B, Johnson T (1986) A consensus amino-acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane-binding proteins. Nature 320:636–638.

    Article  PubMed  CAS  Google Scholar 

  • Gerke V and Weber K (1984) Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brushborders; calcium-dependent binding to non-erythroid spectrin and F-action. EMBO J 3:227–233.

    PubMed  CAS  Google Scholar 

  • Glenney JR Jr (1985) Phosphorylation of p36 in vitro with pp60src. Regulation by Ca2+ and phospholipid. FEBS Lett 192:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Haigler HT, Schlaepfer DD, Burgess WH (1987) Characterization of lipocortin I and an immunologically unrelated 33-kDa proteins as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J Biol Chem 262:6921–6930.

    PubMed  CAS  Google Scholar 

  • Hayashi H, Owada MK, Sonobe S, Kakunaga H, Yano J (1987) A 32-kDa protein associated with phospholipase A2-inhibitory activity from human placenta. FEBS Lett 223:267–272.

    Article  PubMed  CAS  Google Scholar 

  • Hirata F (1981) The regulation of lipomodulin, a phospholipase inhibitory protein, in rabbit neutrophils by phosphorylation. J Biol Chem 256:7730–773.

    PubMed  CAS  Google Scholar 

  • Horseman ND (1989) A prolactin-inducible gene product which is a member of the calpactin/lipocortin family. Mol Endo 3:773–77.

    Article  CAS  Google Scholar 

  • Huang KS, Wallner BP, Mattaliano RJ, Tizard R, Burne C, Frey A, Hession C, McGray P, Sinclair LK, Chow EP, Browning JL, Ramachandran KL, Tang J, Smart JE, Pepinsky RB (1986) Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase. Cell 46:191–199.

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Kishimoto A, Takai Y, Nishizuka Y (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. H. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem 252:7610–7616.

    PubMed  CAS  Google Scholar 

  • Isack CM, Lindberg RA, Hunter T (1989) Synthesis of p36 and p35 is increased when U-937 cells differentiate in culture but expression is not inducible by glucocorticoids. Mol Cell Biol 9:232–240.

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168.

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Suda M, Nakao H, Nagoya T, Saino Y, Arai K, Mizoguchi T, Sato F, Yoshizaki H, Hirata M, Miyata T, Shidara Y, Murata M, Maki M (1987) Structure and expression of cDNA for an inhibitor of blood coagulation isolated from human placenta: a new lipocortin-like protein. J Biochem 102:1261–1273.

    PubMed  CAS  Google Scholar 

  • Kikkawa U, Takai Y, Minakuchi Y, Inohara S, Nishizuka Y (1982) Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification and properties. J Biol Chem 257:13341–13348.

    PubMed  CAS  Google Scholar 

  • Konig B, Di Nitto PA, Blumberg PM (1985) Phospholipid and Ca++ dependency of phorbol ester receptors. J Cell Biochem 27:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Lecompte MF, Rosenberg I, Gitler C (1984) Membrane iserion of prothrombin. Biochem Biophys Res Comm 125:381–386.

    Article  PubMed  CAS  Google Scholar 

  • Machozaek K, Fischer M, Soling H (1989) Lipocortin I and lipocortin II inhibit phosphoinositide-and polyphosphoinositide-specific phospholipase C. The effect results from interaction with the substrates. FEBS Lett 251:207–212.

    Article  Google Scholar 

  • Miele L, Cordella-Miele C, Facchiano A, Mukherjee AB (1988) Novel anti-inflammatory peptides from the region of highest similarity between uteroglobin and lipocortin I. Nature 335:726–730.

    Article  PubMed  CAS  Google Scholar 

  • Moore PB and Dedman JR (1987) Calcium-dependent protein binding to phenothiazine columns. J Biol Chem 257:9663–9667.

    Google Scholar 

  • Munn TZ and Mues GI (1988) Human lipocortin similar to ras gene products. Nature 322:314–315.

    Article  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698.

    Article  PubMed  CAS  Google Scholar 

  • Nobori K, Okimasu E, Sato EF, Utsumi K (1987) Activation of proteinkinase C with cardiolipin-containing liposomes in relation to membrane-protein interaction. Cell Struct Funct 12:375–385.

    Article  PubMed  CAS  Google Scholar 

  • Okimasu E, Shiraishi N, Kobayashi S, Morimoto YM, Miyahara M, Utsumi K (1982) Permeability change of phospholipid liposomes caused by pancreatic phospholipase A2: analysis by means of phase transition release. FEBS Lett 145:82–86.

    Article  CAS  Google Scholar 

  • Okimasu E, Fuji Y, Utsumi T, Yamamoto M, Utsumi K (1986) Cytoplasmic proteins, association with phospholipid vesicles and its dependency on cholesterol. Cell Struct Funct 11:273–283.

    Article  PubMed  CAS  Google Scholar 

  • Okimasu E, Nobori K, Kobayashi S, Suzaki E, Terada S, Utsumi K (1987) Inhibitory effect of cholesterol on interaction between cytoplasmic actin and liposomes, and resorptive effect of high osmotic pressure. Cell Struct Funct 12:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Pepinsky RB, Tizard R, Mattaliano RJ, Sinclair LK, Miller GT, Browning JL, Chow EP, Burne C, Huang KS, Pratt D, Wachter L, Hession C, Frey AZ, Wallner BP (1988) Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J Biol Chem 263:10799–10811.

    PubMed  CAS  Google Scholar 

  • Powell MA and Glenney JR (1987) Regulation of calpactin I phospholipid binding by calpactin I light-chain binding and phosphorylation by pp60v-src. Biochem J 247:321–328.

    PubMed  CAS  Google Scholar 

  • Rothhut B, Cornera C, Prieur B, Errasfa M, Minassian G, Russo-Marie F (1987) Purification and characterization of a 32-kDa phospholipase A2 inhibitory protein (lipocortin) from human peripheral blood mononuclear cells. FEBS Lett 219:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Rotman A, Heldman J, Linder S (1982) Association of membrane and cytoplasmic proteins with the cytoskeleton in blood platelets. Biochemistry 21:1713–1719.

    Article  PubMed  CAS  Google Scholar 

  • Sakata T, Iwagami S, Tsuruta Y, Suzuki R, Hojo K, Sato K, Teraoka H (1988) Mouse lipocortin I cDNA. Nucleic Acids Res 16:11818.

    Article  PubMed  CAS  Google Scholar 

  • Sato EF, Morimoto YM, Matsuno T, Miyahara M, Utsumi K (1987) Neutrophil specific 33 kDa protein: its Ca2+-and phospholipid-dependent intracellular translocation. FEBS Lett 214:181–186.

    Article  PubMed  CAS  Google Scholar 

  • Sato EF, Miyahara M, Utsumi K (1988a) Purification and characterization of a lipocortin-like 33 kDa protein from guinea pig neutrophils. FEBS Lett 227:131–135.

    Article  PubMed  CAS  Google Scholar 

  • Sato EF, Okimasu E, Takahashi R, Miyahara M, Matsuno T, Utsumi K (1988b) Lipocortin-like 33 kDa protein of guinea pig neutrophil. Its distribution and stimulation-dependent translocation detected by monoclonal anti-33kDa protein antibody. Cell Struct Funct 13:89–96.

    Article  PubMed  CAS  Google Scholar 

  • Sato EF, Tanaka Y, Utsumi K (1989a) cDNA cloning and nucleotide sequence of lipocortin-like 33 kDa protein in guinea pig neutrophils. FEBS Lett 244:108–112.

    Article  PubMed  CAS  Google Scholar 

  • Sato EF, Tanaka Y, Edashige K, Kobuchi H, Morishita S, Sugino YN, Inoue M, Utsumi K (1989b) Expression of the cDNA encoding lipocortin-like 39 kDa protein of guinea pig neutrophils in yeast. FEBS Lett 255:231–236.

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer DD, Mehlman T, Burgess WH, Haigler HT (1987) Structural and functional characterization of endonexin II. A calcium-and phospholipid-binding. Proc Natl Acad Sci USA 84:6078–6082.

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC, Ebbecke M, Walker JH, Fritsche U, Boustead C (1984) Isolation of mammalian calelectrins: A new class of ubiquitous Ca2+-regulated proteins. Biochemistry 23:1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Kishimoto A, Kikkawa U, Mori T, Nishizuka Y (1979) Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent proteinkinase system. Biochem Biophys Res Comm 91:1218–1224.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki F, Nakamura E, Nishikubo C, Sakata T, Shin M, Teraoka H (1987) Rat lipocortin I cDNA. Nucleic acids Res 15:7637.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Ashikari T, Shibano Y, Amachi T, Yoshizumi H, Matsubara H (1988) Construction of a human cytochrome c gene and its functional expression in Saccharomyces cerevisiae. J Biochem 103:954–961.

    PubMed  CAS  Google Scholar 

  • Utsumi K and Sato EF (1990) Ca2+-dependent phospholipid binding 39 kDa protein of neutrophils with special reference to stimulation coupled lipid-protein interaction. In: Dedman JR and Smith VL (ed) Stimulus-response coupling: the role of intracellular calcium. The Telford Press, pp 417-449.

    Google Scholar 

  • Utsumi K, Okimasu E, Takehara Y, Watanabe S, Miyahara M, Moromizato Y (1981) Interaction of cytoplasmic protein with liposomes and their cell specificity. FEBS Lett 124:257–260.

    Article  PubMed  CAS  Google Scholar 

  • Utsumi K, Okimasu E, Morimoto YM, Nishihara Y, Miyahara M (1982) Selective interaction of cytoskeletal proteins with liposomes. FEBS Lett 141:176–180.

    Article  PubMed  CAS  Google Scholar 

  • Utsumi K, Sato E, Okimasu E, Miyahara M, Takahashi R (1986) Calcium-dependent association of 33 kDa protein in polymorphonuclear leukocytes with phospholipid liposomes containing phosphatidylserine or caldiolipin. FEBS Lett 201:277–281.

    Article  PubMed  CAS  Google Scholar 

  • Varticovski L, Chahwala SB, Whitman M, Cantley L, Schindler D, Chow EP, Sinclair LK, Pepinsky RB (1988) Location of sites in human lipocortin I that are phosphorylated by protein tyrosin kinases and protein kinase A and C. Biochemistry 27:3682–3690.

    Article  PubMed  CAS  Google Scholar 

  • Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, Sinclair LK, Foeller C, Chow EP, Browning JL, Ramachandran KL, Pepinsky RB (1986) Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 320:77–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sato, E.F., Tanaka, Y., Edashige, K., Sasaki, J., Inoue, M., Utsumi, K. (1991). Annexin I and its Biochemical Properties. In: Heizmann, C.W. (eds) Novel Calcium-Binding Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76150-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76150-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76152-2

  • Online ISBN: 978-3-642-76150-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics