Skip to main content

The EF-Hand, Homologs and Analogs

  • Chapter
Novel Calcium-Binding Proteins

Abstract

Many proteins bind calcium; they have different structures and employ different coordination geometries to achieve a wide range of affinities and selectivities. Kretsinger (1975) proposed that those within the cytosol are calcium modulated, that they are in the magnesium or apoform in the quiescent cell and in the calcium form in the stimulated cell, and that they detect calcium functioning as a second messenger. Further, he proposed that these calcium modulated proteins, in contrast to the vast array of extracytosolic calcium-binding proteins, all contain the EF-hand homolog domain and are all members of one homolog family. The generality of this theory should be questioned. What exactly is a quiescent cell? How do pores and pumps figure in this scheme? Do some proteins lacking EF-hands, such as the annexins, bind messenger calcium? Do some EF-hand proteins have a high enough affinity to bind calcium in quiescent cells? Do some EF-hand proteins function in the extracytosolic environment? Do these generalizations apply to prokaryotic cells? Although we will address some of these questions, our main concern here is to identify and characterize the members of the EF-hand homolog family and to distinguish them from several very similar analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Au-Young J, Robbins PW (1990) Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in saccharomyces cerevisiae. Molec Microbiol 4:197–207.

    Article  CAS  Google Scholar 

  • Babitch JA, Anthony FA (1987) Grasping for calcium binding sites in sodium channels with an EF-hand. J Theor Biol 127:451–459.

    Article  PubMed  CAS  Google Scholar 

  • Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204.

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw CR, Kendrick-Jones J (1980) Identification of the divalent metal for binding domain of myosin regulatory light chains using spin-labeling techniques. J Mol Biol 140:411–433.

    Article  PubMed  CAS  Google Scholar 

  • Baker ME (1985) Evidence that progesterone binding uteroglobin is similar to myosin alkali light chain. FEBS Lett 189:188–194.

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Glasser N, Gerard D (1986) Ions binding to S-100 proteins. I. Calcium-and Zinc-binding properties of bovine brain S-100αα, S-100a(αϟ), and S-lOOb(ϟϟ) Protein: Zn2+ regulates Ca2+ binding on S-100b protein. J Biol Chem 261:8192–8203.

    PubMed  CAS  Google Scholar 

  • Beguin P, Cornet P, Aubert JP (1985) Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellwn. J Bacteriol 162:102–105.

    PubMed  CAS  Google Scholar 

  • Bolander ME, Young MF, Fisher LW, Yamada Y, Termine JD (1988) Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor (Ovomucoid). Proc Natl Acad Sci 85:2919–2923.

    Article  PubMed  CAS  Google Scholar 

  • Brandt P, Zurini M, Neve RL, Rhoads RE, Vanaman TC (1988) A C-terminal, calmodulin-like regulatory domain from the plasma membrane Ca2+-pumping ATPase. Proc Natl Acad Sci 85:2914–2918.

    Article  PubMed  CAS  Google Scholar 

  • Bulawa CE, Slater M, Cabib E, Au-Young J, Sburlati A, Adair WL, Robbins PW (1986) The S. Cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vitro. Cell 46:213–225.

    Article  PubMed  CAS  Google Scholar 

  • Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, Francke U, Ullrich A (1986) Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233:859–866.

    Article  PubMed  CAS  Google Scholar 

  • Cox JA (1986) Isolation and characterization of a new Mr 18,000 protein with calcium vector properties in amphioxus muscle and identification of its endogenous target protein. J Biol Chem 261:13173–13178.

    PubMed  CAS  Google Scholar 

  • Declercq J-P, Tinant B, Parello J, Etienne G, Huber R (1988) Crystal structure determination and refinement of pike 4.10 parvalbumin (minor component from Esox lucius). J Mol Biol 202:349–353.

    Article  PubMed  CAS  Google Scholar 

  • Engel J, Taylor W, Paulsson M, Sage H, Hogan B (1987) Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry 26:6958–6965.

    Article  PubMed  CAS  Google Scholar 

  • Fong KC, Babiteh JA, Anthony FA (1988) Calcium binding to tubulin. Biochim Biophys Acta 952:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Lerner TJ, Huecas M, Sosa-Pineda B, Nogueira N, Lizardi PM (1985) Apparent generation of a segmented mRNA from two separate tandem gene families in Trypanosoma cruzi. Nuc Acid Res 13:5789–5804.

    Article  CAS  Google Scholar 

  • Helman LJ, Ahn TG, Levine MA, Allison A, Cohen PS, Cooper MJ, Cohn DV, Istael MA (1988) Molecular cloning and primary structure of human chromogranin A (secretory protein I) cDNA. J Biol Chem 263:11559–11563.

    PubMed  CAS  Google Scholar 

  • Herzberg O, James MNG (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J Mol Biol 203:761–779.

    Article  PubMed  CAS  Google Scholar 

  • Iacangelo A, Affolter H-U, Eiden LE, Herbert E, Grimes M (1986) Bovine chromogranin A sequence and distribution of its messenger RNA in endorme tissues. Nature 323:82–86.

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Franceschini T, Inoue M (1983) Structural similarities between the development-specific protein S from a Gram-negative bacterium, myxococcus Xanthus, and calmodulin. Proc Natl Acad Sci 80:6829–6833.

    Article  Google Scholar 

  • Kemple MD, Lovejoy ML, Ray BD, Prendergast FG, Rao BDN (1990) Mn (II)-EPR measurements of cation binding by aequorin. Eur J Biochem 187:131–135.

    Article  PubMed  CAS  Google Scholar 

  • Kessler D, Eisenlohr LC, Lathwell MJ, Huang J, Taylor HC, Godfrey SD, Spady ML (1980) Physarum myosin light chain binds calcium. Cell Motility 1:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Crouch TH, Krinks MH (1979) Calcineurin a calcium-and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci 76:6270–6273.

    Article  PubMed  CAS  Google Scholar 

  • Kretsinger RH (1975) Hypothesis: calcium modulated proteins contain EF-hands. In: Calcium transport in contraction and secretion. E. Carafoli, F. Clementi, W. Drabikowski and A. Margreth (eds), NorthHolland Publishing Co., Amsterdam, pp 469–478.

    Google Scholar 

  • Kretsinger RH (1987) Calcium coordination and the calmodulin fold divergent versus convergent evolution. Cold Spring Harb Symp Quant Biol 52:499–510.

    PubMed  CAS  Google Scholar 

  • Kumar VD, Lee L, Edwards BFP (1990) The refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5 Å resolution. Biochemistry 29:1404–1412.

    Article  PubMed  CAS  Google Scholar 

  • Laroche A, Lemieux G, Pallotta D (1989) The nucleotide sequence of a developmentally regulated cDNA from physarum polycephalum. Nuc Acids Res 17:10502–10502.

    Article  CAS  Google Scholar 

  • Lawler J, Chao FC, Cohen CM (1982) Evidence for calcium-sensitive structure in platelet Thrombospondin. Isolation and partial characterization of thrombospondin in the presence of calcium. J Biol Chem 257:12257–12265.

    PubMed  CAS  Google Scholar 

  • Lawyer J, Hynes RO (1986) The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 103:1635–1647.

    Article  Google Scholar 

  • Leathers VL, Linse S, Forsén S, Norman AW (1990) Calbindin-D28k, a 1α,25-dihydroxyvitamin D3-induced calcium-binding protein, binds five or six Ca2+ ions with high affinity. J Biol Chem 265:9838–9841.

    PubMed  CAS  Google Scholar 

  • Lee M G-S, Chen J, Ho AWM, D’Alesandro PA, Vander Ploeg LHT (1990) A putative flagellar Ca2+-binding protein of the flagellum of trypanosomatid protozoan parasites. Nuc Acids Res 18:4252–4252.

    Article  CAS  Google Scholar 

  • Moncrief ND, Goodman M, Kretsinger RH (1990) Evolution of EF-hand calcium-modulated proteins I. Relationships based on amino acid sequences. J Mol Evol 30:522–562.

    Article  PubMed  CAS  Google Scholar 

  • Nagayoshi T, Sanborn D, Hickok NJ, Olsen DR, Fazio MJ, Chu M-L, Knowlton R, Mann K, Deutzmann R, Timpl R, Uitto J (1989) Human nidogen: complete amino acid sequence and structural domains deduced from cDNAs, and evidence for polymorphism of the gene. DNA 8:581–594.

    Article  PubMed  CAS  Google Scholar 

  • Pallotta D, Laroche A, Tessier A, Schinnick T, Lemieux G (1986) Molecular cloning of stage specific mRNAs from amoebea. Biochem Cell Biol 64:1294–1302.

    Article  CAS  Google Scholar 

  • Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Meth Enz 183:63–98.

    Article  CAS  Google Scholar 

  • Poncz M, Eisman R, Heidenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennett JS (1987) Structure of the platelet membrane glycoprotein IIb. Homology to the a subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem 262:8476–8482.

    PubMed  CAS  Google Scholar 

  • Sakane F, Yamada K, Kanon H, Yokoyama C, Tanabe T (1990) Porcine diacylglycerol kinase sequence has zinc finger and EF-hand motifs. Nature 344:345–348.

    Article  PubMed  CAS  Google Scholar 

  • Satyshur KA, Rao ST, Pyzalska D, Drendel W, Greaser, M, Sundaralingam M (1988) Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2 Å resolution. J Biol Chem 263:1628–1647.

    PubMed  CAS  Google Scholar 

  • Sharma Y, Rao ChM, Narasu ML, Rao SC, Somasundaram T, Gopalakrishna A, Balasubramanian D (1989) Calcium ion binding to δ-and to ϟ-crystallins. The presence of the “EF-hand motif” in δ-crystallin that aids in calcium ion binding. J Biol Chem 264:12794–12799.

    PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197.

    Article  PubMed  CAS  Google Scholar 

  • Stuart DI, Acharya KR, Walker NPC, Smith SG, Lewis M, Phillips DC (1986) α-Lactalbumin posesses a novel calcium binding loop. Nature 324:84–87.

    Article  PubMed  CAS  Google Scholar 

  • Swain A, Amma S, Kretsinger RH (1989) Restrained least square refinement of native (calcium) and cadmiumsubstituted carp parvalbumin using X-ray crystallographic data to 1.6 υ resolution. J Biol Chem 264:16620–16628.

    PubMed  CAS  Google Scholar 

  • Szebenyi DME, Moffat K (1986) The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calciumbinding proteins. J Biol Chem 261:8761–8777.

    PubMed  CAS  Google Scholar 

  • Tufty RM, Kretsinger RH (1975) Troponin and parvalbumin calcium-binding regions predicted in myosin light chain and T4 lysozyme. Science 187:167–169.

    Article  PubMed  CAS  Google Scholar 

  • Vyas NK, Vyas MN, Quiocho FA (1987) A novel calcium-binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature 327:635–638.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura N, Kikuchi T, Sasaki T, Kitahara A, Hatanaka M, Murachi T (1983) Two distinct Ca2+ proteins (calpain I and calpain II) purified concurrently by the same method from rat kidney. J Biol Chem 258:8883–8889.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kretsinger, R.H., Tolbert, D., Nakayama, S., Pearson, W. (1991). The EF-Hand, Homologs and Analogs. In: Heizmann, C.W. (eds) Novel Calcium-Binding Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76150-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76150-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76152-2

  • Online ISBN: 978-3-642-76150-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics