Skip to main content

Cloning and Characterization of a cDNA Encoding a Highly Conserved Ca2+-Binding Protein, Identified by an Anti-Prolactin Receptor Antibody

  • Chapter
Novel Calcium-Binding Proteins
  • 106 Accesses

Abstract

Prolactin receptors are found in many tissues (Posner et al. 1974), which suggests that prolactin may have multiple functions. Certainly prolactin has been shown to exert a wide variety of activities in different species (Nicoll and Bern 1972). The molecular mechanisms which mediate the physiological actions of prolactin are, however, unknown. Although the specific interaction of the hormone with its cell surface receptor on target cells is the first step, the subsequent mechanism(s) of signal transduction is unknown. The recent cloning of the prolactin (Boutin et al. 1988) and growth hormone (Leung et al. 1987) receptors has revealed that they is a new class of membrane receptors without sequence similarities to other known membrane receptors. Moreover, there appear to be at least two different forms of the prolactin receptor, a short and a long form. The major mRNA species for the prolactin receptor in the rat liver is 2.2 kb, whereas the major species in the rat mammary gland is 4 kb (Boutin et al. 1988). Prolactin receptor cDNAs have also been isolated from rabbit mammary gland (Edery et al. 1989) and T-47D human breast cancer cells (Boutin et al. 1989) and these cDNAs predict mRNAs which encode 592 and 598 amino acid residue mature proteins, respectively. These are in contrast to the 291 amino acid residue mature protein predicted from the rat liver cDNA. The difference between the two forms of the prolactin receptor resides primarily in the cytoplasmic domain, 57 residues for the rat liver prolactin receptor versus 358 for the rabbit mammary gland receptor (Edery et al. 1989; Boutin et al. 1989). Due to this variability in the size of the mature prolactin receptor protein, it is possible that multiple mechanisms of signal transduction may occur for prolactin receptor, in a species- and tissue-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barraclough R, Savin J, Dube SK, Rudland PS (1987) Molecular cloning and sequence of the gene for p9Kd a cultured myoepithelial cell protein with strong homology to S-100, a calcium binding protein. J Mol Biol 198:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Gerard D (1983) Ions binding to S-100 proteins: structural changes induced by calcium and zinc on S-100a and S-100b proteins. Biochemistry 22:3360–3369.

    Article  PubMed  CAS  Google Scholar 

  • Boutin J-M, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, Banville D, Dusanter I, Djiane J, Kelly PA (1988) Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Boutin J-M, Edery M, Shirota M, Jolicoeur C, Lesueur L, Gould D, Djiane J, Kelly PA (1989) Identification of a cDNA encoding a long form of prolactin receptor in human hepatoma and breast cancer cells. Mol Endocrinology 3:1455–1461.

    Article  CAS  Google Scholar 

  • Brüggen J, Tarcsay L, Cerletti N, Odink K, Rutishauser M, Hollander G, Sorg C (1988) The molecular nature of the cystic fibrosis antigen. Nature 331:570 (Letter).

    Article  PubMed  Google Scholar 

  • Calabretta B, Battini R, Kaczmark L, de Riel JK, Baserga, R (1986) Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem 261:12628–12632.

    PubMed  CAS  Google Scholar 

  • Cameron CM, Rillema JA (1983) Extracellular calcium ion concentration required for prolactin to express its action on casein, ribonucleic acid and lipid biosynthesis in mouse mammary gland expiants. Endocrinology 113:1596–1600.

    Article  PubMed  CAS  Google Scholar 

  • Donato R (1988) Calcium-independent pH-regulated effects of S-100 proteins on assembly-dissembly of brain microtubule protein in vitro. J Biol Chem 263:106–110.

    PubMed  CAS  Google Scholar 

  • Djiane J, Houdebine LM, Kelly PA (1981) Prolactin-like activity of anti-prolactin receptor antibodies on casein and DNA synthesis in the mammary gland. Proc Natl Acad Sci USA 78:7445–7448.

    Article  PubMed  CAS  Google Scholar 

  • Edery M, Jolicoeur C, Levi-Meyrueis C, Dusanter-Fourt I, Petridou B, Boutin J-M, Lesueur L, Kelly PA, Djiane J (1980) Identification and sequence analysis of a second form of prolactin receptor by molecular cloning of complementary DNA from rabbit mammary gland. Proc Natl Acad Sci USA 86:2112–2116.

    Article  Google Scholar 

  • Ferrari S, Calabretta B, de Riel JK, Battini R, Ghezzo F, Lauret E, Griffen C, Emanuel BS, Gurrieri F, Baserga R (1987) Structural and functional analysis of a growth-regulated gene, the human calcyclin. J Biol Chem 262:8325–8332.

    PubMed  CAS  Google Scholar 

  • Filipek A, Heizmann CW, Kuznicki J (1989) Zinc binding and dimer formation by calcyclin-like calcium binding protein from Ehrlich ascites tumor cells. Abstract in First European Symposium on Calcium Binding Proteins in Normal and Transformed Cells. Bruxelles, April 20-22.

    Google Scholar 

  • Fulmer CS, Wasserman RH (1981) The amino acid sequence of bovine intestinal calcium-binding protein. J Biol Chem 256:5669–5674.

    Google Scholar 

  • Gerke V, Weber K (1985) The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO J 4:2917–2920.

    PubMed  CAS  Google Scholar 

  • Guo X, Chambers AF, Parfett CLJ, Waterhouse P, Murphy LC, Reid RE, Craig AM, Edwards DR, Denhardt DT (1990) Identification of a serum inducible mRNA (5B10) as the mouse homolog of calcyclin: tissue distribution and expression in metastatic, ras-transformed NIH 3T3 cells. Cell Growth and Differentiation (in press).

    Google Scholar 

  • Haeuptle M-T, Yolande LMS, Bogenmann E, Reggio H, Racine L, Kraehenbuhl J-P (1983) Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture. J Cell Biol 96:1425–1434.

    Article  PubMed  CAS  Google Scholar 

  • Hesketh TR, Moore JP, Morris JDH, Taylor MV, Rogers J, Smith GA, Metcalfe JC (1985) A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313:481–484.

    Article  PubMed  CAS  Google Scholar 

  • Horrobin DF (1978) Prolactin, Vol. 6, Eden Press, Montreal.

    Google Scholar 

  • Houdebine LM, Djiane J, Dusanter-Fourt I, Martel P, Kelly, PA, Devinoy E, Servely JL (1985) Hormonal action controlling mammary activity. J Dairy Sci 68:489–500.

    Article  PubMed  CAS  Google Scholar 

  • Isobe T, Okuyama T (1981) The amino acid sequence of the alpha subunit in bovine brain S-100a protein. Eur J Biochem 116:79–86.

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Grusby LL, Swiergel J, Linzer DH (1987) A growth-related mRNA in cultured mouse cells encodes a placental calcium-binding protein. Nucleic Acid Res 15:6677–6690.

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Raguet S, Zachwieja J, Djiane J, Kelly PA (1987) Hepatic prolactin receptors in the rat: characterization using monoclonal antireceptor antibody. Endocrinology 120:739–749.

    Article  PubMed  CAS  Google Scholar 

  • Kelly PA, Djiane J, Katoh M, Ferland LH, Houdebine L, Teyssot, B, Dusanter-Fourt I (1984) The interaction of prolactin with its receptors in target tissues and its mechanism of action. Recent Prog Horm Res 40:379–436.

    PubMed  CAS  Google Scholar 

  • Kligman D, Marshak DR (1985) Purification and characterization of a neunte extension factor from bovine brain. Proc Natl Acad Sci USA 82:7136–7139.

    Article  PubMed  CAS  Google Scholar 

  • Kretsinger RH, Nockold CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326.

    PubMed  CAS  Google Scholar 

  • Kuwar R, Usui H, Maeda T, Fukui T, Yamanari N, Ohtsuka E, Ikehara M, Takahashi Y (1984) Molecular cloning and the complete nucleotide sequence of cDNA to mRNA for S-100 protein of rat brain. Nucleic Acid Res 12:7455–7465.

    Article  Google Scholar 

  • Kuznicki J, Filipek A (1987) Purification and properties of a novel Ca2+-binding protein (10.5 kDa) from Ehrlich-ascites-tumor cells. Biochem J 247:663–667.

    PubMed  CAS  Google Scholar 

  • Kuznicki J, Filipek A, Hunziker PE, Huber S, Heizmann CW (1989) Calcium-binding protein from mouse Ehrlich ascites-tumor cells is homologous to human calcyclin. Biochem J 263:951–956.

    PubMed  CAS  Google Scholar 

  • Leonard DGB, Ziff EB, Greene LA (1987) Identification and characterization of mRNA’s regulated by Nerve Growth Factor in PC 12 cells. Mol Cell Biol 7:3156–3167.

    PubMed  CAS  Google Scholar 

  • Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI (1987) Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330:537–543.

    Article  PubMed  CAS  Google Scholar 

  • Lee EY-H, Lee W-H, Kaetzel CS, Parry G, Bissell MJ (1985) Interaction of mouse mammary epithelial cells with collagen substrate: regulation of casein gene expression and secretion. Proc Natl Acad Sci 82:1419–1423.

    Article  PubMed  CAS  Google Scholar 

  • Masiakowski P, Shooter M (1988) Nerve growth factor induces the genes for two proteins related to a family of calcium binding proteins in PC 12 cells. Proc Natl Acad Sci USA 85:1277–1281.

    Article  PubMed  CAS  Google Scholar 

  • Metz R, Gorham J, Siegfried Z, Leonard D, Gizang-Ginsberg E, Thompson MA, Lawe D, Kouzarides T, Vosatka R, MacGregor D, Jamal S, Greenberg ME, Ziff EB (1988) Gene regulation by growth factors. Cold Spring Harbour Symposia on Quantitative Biology 53:727–737.

    CAS  Google Scholar 

  • Mitani M, Dufau ML, (1986) Purification and characterization of prolactin receptors from rat ovary. J Biol Chem 261:1309–1315.

    PubMed  CAS  Google Scholar 

  • Murphy LC, Tsuyuki D, Myal Y, Shiu RPC (1987) Isolation and sequencing of a cDNA for a prolactininducible protein (PIP): regulation of PIP gene expression in the human breast cancer cell line, T-47D. J Biol Chem 262:15236–15241.

    PubMed  CAS  Google Scholar 

  • Murphy LC, Murphy LJ, Tsuyuki D, Duckworth ML, Shiu RPC (1988) Cloning and characterization of a highly conserved putative calcium-binding protein, identified by anti-prolactin receptor antiserum. J Biol Chem 263:2397–2401.

    PubMed  CAS  Google Scholar 

  • Murphy LJ, Bell CI, Duckworth ML, Friesen HG (1987) Identification, characterization and regulation of a rat complementary deoxyribonucleic acid which encodes insulin-like growth factor-1. Endocrinology 121:684–691.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll CS, Bern HA (1972) In: Lactogenic hormones, Ciba Foundation Symposium, (Wolstenholme GE and Knight J, eds), Churchill Livingstone, London.

    Google Scholar 

  • Odink K, Cerletti N, Brüggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards A, Schlegel R, Sorg C (1987) Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330:80–82.

    Article  PubMed  CAS  Google Scholar 

  • Posner BI, Kelly PA, Shiu RPC, Friesen HG (1974) Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variation and characterization. Endocrinology 96:521–531.

    Article  Google Scholar 

  • Reid RE (1987a) Total sequential solid phase synthesis of rabbit skeletal tropinin C calcium-binding site III. Internat J Pept Prot Res 30:613–621.

    Article  CAS  Google Scholar 

  • Reid RE (1987b) A synthetic 33-residue analogue of bovine brain calmodulin calcium-binding site III: synthesis, purification and calcium-binding. Biochemistry 26:6070–6073.

    Article  PubMed  CAS  Google Scholar 

  • Saris CJM, Kristensen T, D’Eustachio P, Hicks LJ, Noonan DJ, Hunter T, Tack BF (1987) cDNA sequence and tissue distribution of the mRNA for bovine and murine pll, the S-100-related light chain of the protein-tyrosine kinase substrate p36 (Calpactin 1). J Biol Chem 262:10663–10671.

    PubMed  CAS  Google Scholar 

  • Shiu RPC (1979) Prolactin receptors in human breast cancer cells in long-term tissue culture. Cancer Res 39:4381–4386.

    PubMed  CAS  Google Scholar 

  • Shiu RPC, Friesen HG (1974) Solubilization and purification of a prolactin receptor from the rabbit mammary gland. J Biol Chem 249:7902–7911.

    PubMed  CAS  Google Scholar 

  • Shiu RPC, Friesen HG (1974a) Properties of a prolactin receptor from the rabbit mammary gland. Biochem J 140:301–311.

    PubMed  CAS  Google Scholar 

  • Shiu RPC, Friesen HG (1976) Interaction of cell-membrane prolactin receptor with its antibody. Biochem J 157:619–626.

    PubMed  CAS  Google Scholar 

  • Shiu RPC, Friesen HG (1976a) Blockade of prolactin action by antiserum to its receptor. Science 192:259–261.

    Article  PubMed  CAS  Google Scholar 

  • Shiu RPC, Friesen HG (1981) In: Receptor regulation (Lefkowitz RJ, ed.) Vol. 13, Chapman and Hall, London, pp 69–81.

    Google Scholar 

  • Shiu RPC, Iwasiow B (1985) Prolactin-inducible proteins in human breast cancer. J Biol Chem 260:11307–11313.

    PubMed  CAS  Google Scholar 

  • Shiu RPC, Paterson JA (1984) Alteration of cell shape, adhesion and lipid accumulation in human breast cancer cells (T-47D) by human prolactin and growth hormone. Cancer Res 44:1178–1186.

    PubMed  CAS  Google Scholar 

  • Szebenyi DME, Moffat K (1986) The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding and implications for the structure of other calciumbinding proteins. J Biol Chem 261:8761–8777.

    PubMed  CAS  Google Scholar 

  • Szebenyi DME, Obendorf SK, Moffat K (1981) Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature 294:327–332.

    Article  PubMed  CAS  Google Scholar 

  • van Eldik LJ, Zendegui JG, Marshak DR, Watterson DM (1982) Calcium-binding proteins and the molecular basis of calcium action. Int Rev Cytol 77:1–61.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murphy, L.C., Gong, Y., Reid, R.E. (1991). Cloning and Characterization of a cDNA Encoding a Highly Conserved Ca2+-Binding Protein, Identified by an Anti-Prolactin Receptor Antibody. In: Heizmann, C.W. (eds) Novel Calcium-Binding Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76150-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76150-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76152-2

  • Online ISBN: 978-3-642-76150-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics