Sodium and Oxygen Addition to Nonionic Contrast Media. Effects on Contractile Force and Risk of Ventricular Fibrillation in the Isolated Rabbit Heart

  • L. Bååth
Part of the Frontiers in European Radiology book series (FER, volume 8)


When investigating patients with myocardial ischemia and arteriosclerotic changes in the coronary arteries, cardioangiography and coronary angiography are of great importance. As cardiac bypass operations increase in number, so the number of these preoperative investigations is also increasing [35]. Older and more severely diseased patients than those studied previously are being investigated, for instance in connection with myocardial infarction [15]. With more vulnerable patients, it is important that the already low risks of coronary angiography become even lower and that the contrast medium used has as small a negative effect as possible.


Contrast Medium Ventricular Fibrillation Contractile Force Iodine Atom Negative Inotropic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almén T (1969) Contrast agent design. Some aspects on the synthesis of water-soluble contrast agents of low osmolality. J Ther Biol 24:216CrossRefGoogle Scholar
  2. 2.
    Almén T (1971) Toxicity of radiocontrast agents. In: Knoefel PK (ed) Radiocontrast agents, vol 2. Pergamon Oxford, p 443Google Scholar
  3. 3.
    Almen T (1973) Effects of metrizamide and other contrast media on the isolated rabbit heart. Acta Radiol Suppl (Stockh) 335: 216Google Scholar
  4. 4.
    Almén T, Bååth L (1987) Effects of iopentol, iohexol and metrizoate on the contractile force of the isolated rabbit heart. Acta Radiol Suppl (Stockh) 370: 61Google Scholar
  5. 5.
    Als AV, Serur JR, LaRaia PJ, Miner N, Paulin S (1978) Differential effects of sodium meglumine calcium metrizoate on the inotropic state of normal and ischemic myocardium. Radiology 128: 499PubMedGoogle Scholar
  6. 6.
    Anonymous (1949) Un nuovo agente solubilizzante. It Farmaco Sci 4: 122Google Scholar
  7. 7.
    Aronson RS, Cranefield PF (1974) The effect of resting potential on the electrical activity of canine cardiac purkinje fibers exposed to Na-free solution or oubain. Pflugers Arch 347: 101PubMedCrossRefGoogle Scholar
  8. 8.
    Bååth L (1990) Sodium addition and/or oxygen saturation of the nonionic contrast medium iohexol during normal and reduced perfusion pressure in the isolated rabbit heart. Effects on contractile force and risk of ventricular fibrillation. Acta Radiol 31: 525PubMedGoogle Scholar
  9. 9.
    Bååth L, Almén T (1989a) Reducing the risk of ventricular fibrillation by adding sodium to ionic and non-ionic contrast media with low iodine concentration. Coronary perfusion of the isolated rabbit heart with meglumine diatrizoate or iopentol at 140 mg I/ml and 0–154 mmol Na+/1. Acta Radiol 30: 207PubMedCrossRefGoogle Scholar
  10. 10.
    Bååth L, Almen T (1989b) Reduction of the risk of ventricular fibrillation in the isolated rabbit heart by small additions of electrolytes to nonionic monomeric contrast media. Acta Radiol 30: 327PubMedCrossRefGoogle Scholar
  11. 11.
    Bååth L, Almen T, Öksendal A (1990) Effect of sodium addition to nonionic contrast media on cardiac contractile force. Perfusion of the isolated rabbit heart with iohexol and iopentol containing 0–154 mmol Na + /1 added as NaCl. Acta Radiol 31: 99PubMedGoogle Scholar
  12. 12.
    Bååth L, Almen T, Öksendal A (1990) Oxygen saturation of the low osmolar contrast media iohexol, ioxaglate and iodixanol in the isolated rabbit heart. Acta Radiol 31: 519PubMedGoogle Scholar
  13. 13.
    Bailey JC, Elharrar V, Douglas PZ (1978) Slow-channel depolarization: mechanism and control of arrhythmias. Ann Rev Med 29: 417PubMedCrossRefGoogle Scholar
  14. 14.
    Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibers. J Physiol (Lond) 268: 177Google Scholar
  15. 15.
    Blanke H, Rentrop P, Karsch KR, Kreuzer H (1979) Coronary angiographic and ventriculographic findings in the acute and chronic stage of myocardial infarction. Circulation 60 [Suppl]: 11Google Scholar
  16. 16.
    Boijsen E, Kormano M (eds) (1987) Iopentol Chemistry, toxicology and pharmacology of a non-ionic contrast medium. Acta Radiol Suppl 370Google Scholar
  17. 17.
    de Burgh Daly I, Clark AJ (1921) The action of ions upon the frog’s heart. J Physiol (Lond) 54: 367Google Scholar
  18. 18.
    Bygrave FL (1978) Mitochondria and the control of intracellular calcium. Biol Rev 53: 43PubMedCrossRefGoogle Scholar
  19. 19.
    Chapman RA (1983) Control of cardiac contractility at the cellular level. Am J Physiol 245: H535PubMedGoogle Scholar
  20. 20.
    Cranefield PF, Wit AL, Hoffman BF (1972) Conduction of the cardiac impulse. III. Characteristics of very slow conduction. J Gen Physiol 59: 227PubMedCrossRefGoogle Scholar
  21. 21.
    Davis K, Ward Kennedy J, Kemp HG Jr, Judkins MP, Gosselin AJ, Killip T (1979) Complications of coronary arteriography from the collaborative study of coronary artery surgery (CASS). Circulation 59: 1105PubMedGoogle Scholar
  22. 22.
    Dawson P, Bradshaw A (1989) Radiocontrast agents are contact activators of coagulation. Br J Radiol 62: 631PubMedCrossRefGoogle Scholar
  23. 23.
    Dawson P, Howell M (1986) The nonionic dimers: a new class of contrast agents. Br J Radiol 59:987PubMedCrossRefGoogle Scholar
  24. 24.
    Dhalla NS, Smith CI, Pierce GN, Elimban V, Makino N, Khattar JC (1986) Heart sarcolemmal cation pumps and binding sites. In: Rupp H (ed) Regulation of heart function: basic concepts and clinical applications. Thieme, New York, p 121Google Scholar
  25. 25.
    Dhalla NS, Ziegelhoffer A, Harrow JAC (1977) Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 55: 1211PubMedCrossRefGoogle Scholar
  26. 26.
    Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmatic reticulum. Am J Physiol 245: C1PubMedGoogle Scholar
  27. 27.
    Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmatic reticulum. Circ Res 40: 119PubMedGoogle Scholar
  28. 28.
    Feinberg H, Boyd E, Tanzini G (1968) Mechanical performance and oxygen utilization of the isolvolumic rabbit heart. Am J Physiol 215: 132PubMedGoogle Scholar
  29. 29.
    Feldman RL, Jalowiec DA, Hill JA, Lambert CR (1988) Contrast media-related complications during cardiac catheterization using Hexabrix or Renografin in high-risk patients. Am J Cardiol 61: 1334PubMedCrossRefGoogle Scholar
  30. 30.
    Fischer HW (1986) Catalogue of intravascular contrast media. Radiology 159: 561PubMedGoogle Scholar
  31. 31.
    Fischer HW, Thomson KR (1978) Contrast media in coronary arteriograhy: a review. Invest Radiol 13: 450PubMedCrossRefGoogle Scholar
  32. 32.
    Garrey WE (1914) The nature of fibrillatory contractions. Its relation to tissue mass and form. Am. J. Physiol 33: 397Google Scholar
  33. 33.
    Gerber KH, Higgins CB, Yuh Y, Koziol JA (1982) Regional myocardial hemodynamic and metabolic effects of ionic and nonionic contrast media in normal and ischemic states. Circulation 65: 1307PubMedCrossRefGoogle Scholar
  34. 34.
    Gertz EW, Wisneski JA, Neese R, Silverstein D, Akin JR, Morris DL (1984) The effects of iopamidol on myocardial metabolism. A comparison with Renografm-76. Invest Radiol [Suppl] 19: S191.CrossRefGoogle Scholar
  35. 35.
    Gillum RF (1987) Coronary bypass surgery and coronary angiography in the United States, 1979–1983. Am Heart J 113: 1255PubMedCrossRefGoogle Scholar
  36. 36.
    Grainger RG (1980) Osmolality of intravascular radiological contrast media. Br J Radiol 53: 739PubMedCrossRefGoogle Scholar
  37. 37.
    Hayakawa K, Yamashita K (1989) Low-osmolality contrast media-induced ventricular fibrillation. Invest Radiol 24: 298PubMedCrossRefGoogle Scholar
  38. 38.
    Hesselink JR, Hayman LA, Chung KJ, McGinnis BD, Davis KR Taveras JM (1984) Myocardial ischemia during intravenous DSA in patients with cardiac disease. Radiology 153: 577PubMedGoogle Scholar
  39. 39.
    Higgins CB (1984a) Overview of cardiovascular effects of contrast media. Comparison of ionic and non-ionic media. Invest Radiol [Suppl] 19: S187CrossRefGoogle Scholar
  40. 40.
    Higgins CB (1984b) Contrast media in the cardiovascular system. In: Sovak M (ed) Radiocontrast agents. Springer, Berlin Heidelberg New York, p 193 (Handbook of experimental pharmacology, vol 73)Google Scholar
  41. 41.
    Hohenjäger P (1986) Regulation of myocardial force of contractile by sarcolemmal ion channels, the sodium pump, and sodium-calcium exchange. In: Rupp H (ed) Regulation of heart function: basic concepts and clinical applications. Thieme New York p 159Google Scholar
  42. 42.
    Katayama H, Yamaguchi K, Kozuka T, Takashima T, Seez P, Matsuura K (1990) Adverse reactions to ionic and nonionic contrast media. A report from the Japanese committee on the safety of contrast media. Radiology 175: 621PubMedGoogle Scholar
  43. 43.
    Katz AM (1977) Cardiac action potential. In: Katz AM (ed) Physiology of the heart. Raven, New York, 229.Google Scholar
  44. 44.
    Kinnison ML, Powe NR, Steinberg EP (1989) Results of randomized controlled trials of low- versus high-osmolality contrast media. Radiology 170: 381PubMedGoogle Scholar
  45. 45.
    Kohlhart M, Haastert HP, Krause H (1973) Evidence of non-specificity of the Ca-channel in mammalian myocardial fibre membranes. Pflugers Arch 342: 125CrossRefGoogle Scholar
  46. 46.
    Kozeny GA, Murdock DK, Euler DE, Hano JE, Scanlon PJ, Bansal VK, Vertuno LL (1984) In vivo effects of acute changes in osmolality and sodium concentration on myocardial contractility. Am Heart J 109: 290CrossRefGoogle Scholar
  47. 47.
    Langendorff O (1895) Untersuchangen am überlebenden Säugetierherzen. Pflugers Arch Ges Physiol 61: 219Google Scholar
  48. 48.
    Langer GA (1971) The intrinsic control of myocardial contraction - ionic factors. N Engl J Med 285:1065PubMedCrossRefGoogle Scholar
  49. 49.
    Langer GA (1987) The role of calcium at the sarcolemma in the control of myocardial contractility. Can J Physiol Pharmacol 65: 627PubMedCrossRefGoogle Scholar
  50. 50.
    Langer GA, Frank JS, Philipson KD (1982) Ultrastructure and calcium exchange of the sarcolemma, sarcoplasmatic reticulum and mitochondria of the myocardium. Pharmacol Ther 16: 331PubMedCrossRefGoogle Scholar
  51. 51.
    Lasser EC, Berry CC (1989) Nonionic vs ionic contrast media: what do the data tell us? Am J Roentgenol 152: 985Google Scholar
  52. 52.
    Lee CO (1981) Ionic activities in cardiac muscle cell and application of ion-selective microelectrodes. Am J Physiol 241: H459PubMedGoogle Scholar
  53. 53.
    Lee CO (1985) 200 years of digitalis: the emerging central role of sodium in the control of cardiac force. Am J Physiol 249: C367PubMedGoogle Scholar
  54. 54.
    Lee CO, Fozzard HA (1975) Activities of potassium and sodium ions in rabbit heart muscle. J Gen Physiol 65: 695PubMedCrossRefGoogle Scholar
  55. 55.
    McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the action potential of cardiac purkinje firbers. J Physiol (Lond) 251: 1Google Scholar
  56. 56.
    McAlpin RN, Weidner WA, Kattus A A, Hanafee WN (1966) Electrocardiographic changes during selective coronary cineangiograhy. Circulation 34: 627Google Scholar
  57. 57.
    McEwen LM (1956) The effect on the isolated rabbit heart of vagal stimulation and its modification by cocaine, hexamethonium and oubain. J Physiol (Lond) 131: 678Google Scholar
  58. 58.
    Miller D, Lohse J, Wolf GL (1976) Slow response in canine purkinje fiber by contrast medium. Invest Radiol 11: 577PubMedCrossRefGoogle Scholar
  59. 59.
    Mines GR (1914) On circulating excitations in the heart muscle and their possible relation to tachycardia and fibrillation. Trans R Soc Can 8: 43Google Scholar
  60. 60.
    Morgan HE, James RN (1985) Metobolic regulation and myocardial function. In: Willis Hurst J (ed) The heart, 6th ed; MacGraw-Hill, New York, p 16Google Scholar
  61. 61.
    Morris TW (1988) The importance of sodium concentration on the incidence of fibrillation during coronary arteriography in dogs. Invest Radiol [Suppl] 23: 137CrossRefGoogle Scholar
  62. 62.
    Morris TW, Ventura J (1986) Incidence of fibrillation with dilute contrast media for intra-arterial coronary digital substracted angiography. Invest Radiol 21: 416PubMedCrossRefGoogle Scholar
  63. 63.
    Morris TW, Hayakawa K, Sahler LG, Ekholm S (1986) Incidence of fibrillation with isotonic contrast media for intra-arterial coronary digital subtraction angiography. Diagn Imag Clin Med 55: 109Google Scholar
  64. 64.
    Mullins LJ (1979) The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol 236: C103PubMedGoogle Scholar
  65. 65.
    Murdock DK, Euler DE, Becker DM, Murdock JD, Scanlon PJ, Gunnar RM (1985) Ventricular fibrillation during coronary angiography: an analysis of mechanisms. Am Heart J 109: 265PubMedCrossRefGoogle Scholar
  66. 66.
    Neagley SR, Vought MB, Weidner WA, Zwillich CW (1986) Transient oxygen desaturation following radiographic contrast medium administration. Arch Intern Med 146: 1094PubMedCrossRefGoogle Scholar
  67. 67.
    Neely JR, Liebermeister H, Battersby EJ, Morgan HE (1967) Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212: 804PubMedGoogle Scholar
  68. 68.
    New W, Trautwein W (1972) Inward membrane currents in mammalian myocardium. Pflugers Arch 334: 1PubMedCrossRefGoogle Scholar
  69. 69.
    Newell JD, Higgins CB, Kelley MJ, Green CF, Schmidt WS Haigler F (1980) The influence of hyperosmolality on left ventricular contractile state: disparate effects of nonionic and ionic solutions. Invest Radiol 15: 363PubMedCrossRefGoogle Scholar
  70. 70.
    Paulin S, Adams DF (1971) Increased ventricular fibrillation during coronary arteriography with a new contrast medium preparation. Radiology 101: 45PubMedGoogle Scholar
  71. 71.
    Reeves J, Trumble W, Sutko JL, Kadoma M, Fröhlich J (1981) Calcium transport mechanisms in cardiac sarcolemmal vesicles. In: Bronner F, Peterlik M (eds) Calcium and phosphate transport across biomembranes. Academic, New York, p 15Google Scholar
  72. 72.
    Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195: 451Google Scholar
  73. 73.
    Russell DC, Oliver MF (1978) Ventricular refractoriness during acute myocardial ischaemia and its relationship to ventricular fibrillation. Cardiovasc Res 12: 221PubMedCrossRefGoogle Scholar
  74. 74.
    Rüegg JC, Pfitzer G (1986) Excitation-contraction coupling in coronary smooth muscle. In: Rupp H (ed) Regulation of heart function: basic concepts and clinical applications. Thieme, New York, p 22Google Scholar
  75. 75.
    Salvesen S, Lund Nielsen P, Holtermann H (1967) Ameliorating effects of calcium and magnesium ions on the toxicity of isopaque sodium. II: Studies on the isolated heart and auricles of the rabbit. Acta Radiol Suppl 270: 17Google Scholar
  76. 76.
    Serur JR, Als AV, Miner-Green N, Paulin S (1980) Comparative effects of three radiographic contrast agents in isolated normal and ischemic canine hearts. Invest Radiol 15: 196CrossRefGoogle Scholar
  77. 77.
    Silver PJ (1986) Pharmacological modulation of cardiac and vascular contractile protein function. J Cardiovasc Pharmacol 8 [Suppl 9]: 34Google Scholar
  78. 78.
    Simon AL, Shabetai R, Lang JH, Lasser EC (1972) The mechanism of production of ventricular fibrillation in coronary angiography. Am J Roentgenol 114: 810Google Scholar
  79. 79.
    Sovak M, Robertson HJ (1988) Osmolality and ionicity: confusion in terminology applied to contrast media (letter). Radiology 168: 281Google Scholar
  80. 80.
    Starling EH (1918) The Linacre lecture on the law of the heart. Longman, Green & O., LondonGoogle Scholar
  81. 81.
    Surawicz B (1967) Relationship between electrocardiogram and electrolytes. Am Heart J 73: 814PubMedCrossRefGoogle Scholar
  82. 82.
    Swick M (1929) Darstellung der Niere und Harnwege in Röntgenbild durch intravenöse Einbringung eines neuen Kontraststoffes: des Uroselectans. Klin Wochenschr 8: 2087CrossRefGoogle Scholar
  83. 83.
    Thomson KR, Violante MR, Kenyon T, Fischer HW (1978) Reduction of ventricular fibrillation using calcium-enriched Renografin 76. Invest Radiol 13: 238PubMedCrossRefGoogle Scholar
  84. 84.
    Tilly P, Hardouin M, Lautrou J (1974) Kontrastmittel für Röntgenaufnahmen. Bundesrepublik Deutschland, Offenlegungsschrift 2523567Google Scholar
  85. 85.
    Trägardh B, Lynch PR (1987) Cardiac effects of ionic and nonionic contrast agents. In: Parvez Z, Moncada R, Sovak M (eds) Contrast media: biologic effects and clinical application, vol 2. CRC, Boca RatonGoogle Scholar
  86. 86.
    Trägårdh B, Almén T, Lynch P (1975) Addition of calcium or other cations and of oxygen to ionic and nonionic contrast media. Effects on cardiac function during coronary arteriography. Invest Radiol 10: 231PubMedCrossRefGoogle Scholar
  87. 87.
    Tsien RW (1983) Calcium channels in excitable membranes. Ann Rev Physiol 45: 341CrossRefGoogle Scholar
  88. 88.
    Vik-Mo H, Rosland G, Fölling M, Danielsen R (1988) Hemodynamic and electrocardiographic consequenses of high- and low-osmolality contrast agents for left ventricular angiography. Cathet Cardiovasc Diagn 14: 143PubMedCrossRefGoogle Scholar
  89. 89.
    Ward Kennedy J, Baxley WA, Bunnel IL, Gensini GG, Messer JV, Mudd JG, Noto TJ, Paulin S, Pichard AD, Sheldon WC, Cohen M (1982) Mortality related to cardiac catheterization and mortality. Cathet Cardiovasc Diagn 8: 323CrossRefGoogle Scholar
  90. 90.
    Weikl A, Drust OE, Lang E (1975) Komplikationen der selektiven Koronarangiographie in Abhängigkeit von verwendeten Kontrastmitteln. ROFO 123: 218PubMedCrossRefGoogle Scholar
  91. 91.
    Weirich J, Antoni H (1986) Vulnerability of the heart to ventricular fibrillation: basic mechanisms. In: Rupp H (ed) Regulation of heart function. Thieme New York, p 376Google Scholar
  92. 92.
    Weisfeldt ML, Shock NW (1970) Effect of perfusion pressure on coronary flow and oxygen usage of nonworking heart. Am J Physiol 218: 95PubMedGoogle Scholar
  93. 93.
    Wit AL, Rosen MR, Hoffman BF (1974) Electrophysiology and pharmacology of cardiac arrhythmias. II. Relationship of normal and abnormal electrical activity of cardiac fibers to the genesis of arrhythmias. Am Heart J 88: 515PubMedCrossRefGoogle Scholar
  94. 94.
    Wolf GL (1980) The fibrillatory properties of contrast agents. Invest Radiol 15: 208CrossRefGoogle Scholar
  95. 95.
    Wolf GL, Mulry CS, Laski PA, Kilzer K (1983) Changes in ventricular fibrillation threshold induced by contrast agents during acute coronary artery occlusion. Invest Radiol 18: 145PubMedCrossRefGoogle Scholar
  96. 96.
    Yamazaki H, Banka VS, Bodenheimer MM, Hattori S, Agarwal JB, Helfant RH (1980) Differential effects of Renografin-76 in the ischemic and monischemic myocardium. Am J Cardiol 47: 597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • L. Bååth
    • 1
  1. 1.Dept of Diagnostic RadiologyMalmö General Hospital, University of LundMalmöSweden

Personalised recommendations