Floc Strength in Bridging Flocculation

  • Klaus Mühle
  • Klaus Domasch


The growth of flocs in flowing suspensions is limited by hydrodynamic forces responsible not only for floc formation but also for their destruction. New approaches for attaining the maximum stable floc size in turbulent flow have been derived taking into account both the influence of hydrodynamics and particle adhesion within the floc. Modeling is based on the assumption that fluid eddies of the scale of aggregate size are responsible for the destruction of this floc. The validity of this floc stability model was proved by studies on adhesion between glass beads and flocculation of suspensions of such monodisperse glass particles using high-molecular weight polyacrylamides as bridging agents. Batch flocculation experiments were carried out in the turbulent flow of a cylinder stirrer.

Adhesive forces as well as floc properties to a great extent depend on concentration, molecular weight and ionic charge of the polymer flocculant. The experimental results indicate a promoting effect of hydrodynamic forces on floe stability as a consequence of reconformation of the bridging molecules induced by definite stress.


Adhesive Strength Adhesive Force Hydrodynamic Force Floc Size Particle Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Argaman, Y., Kaufman, W.J.: J. San. Eng. Div., ASCE 96, SA 2 (1970) 223Google Scholar
  2. [2]
    Parker, D.S., Kaufman, W.J., Jenkins, D.: J. Sanit. Eng. Div., ASCE 98, SA 1 (1972) 79Google Scholar
  3. [3]
    Tomi, D.T., Bagster, D.F.: Trans. Inst. Chem. Engrs. 56 (1978) 9Google Scholar
  4. [4]
    Tambo, N., Hozumi, H.: Water Research 13 (1979) 409, 421CrossRefGoogle Scholar
  5. [5]
    Sakurai, M., Harano, Y.: Int. Chem. Engng. 22 (1982) 116Google Scholar
  6. [6]
    Francois, R.J.: Water Research 21 (1987) 1023CrossRefGoogle Scholar
  7. [7]
    Ivanauskas, A.: Floe Stability in Turbulent Flow. Thesis, Academy of Sciences of GDR, 1984Google Scholar
  8. [8]
    Neesse, T., Tvanauskas, A., Miihle, K.: Freiberger Forschungshefte A 720 (1985) 63Google Scholar
  9. [9]
    Neesse, T., Miihle, K., Ivanauskas, A.: Chem. Technik 39 (1987) 292Google Scholar
  10. [10]
    Mühle, K., Domasch, K., Neesse, T.: Freiberger Forschungshefte A 790 (1989) 115Google Scholar
  11. [11]
    Healy, T.W., La Mer, V.K.: J. Phys. Chem. 66 (1962) 1835CrossRefGoogle Scholar
  12. [12]
    Gregory, J., in: Flocculation, Sedimentation and Consolidation, B. Moudgil and P. Somasundaran (eds.). Engineering Foundation, New York 1986, pp. 125–137Google Scholar
  13. [13]
    Smith, D.K.W., Kitchener, J.A.: Chem. Eng. Sci. 33(1978) 1631CrossRefGoogle Scholar
  14. [14]
    Pelton, R.H., Allen, L.H.: J. Colloid Interface Sci. 99 (1984) 387CrossRefGoogle Scholar
  15. [15]
    Mühle, K.: Colloid Polymer Sci. 263 (1985) 660CrossRefGoogle Scholar
  16. [16]
    Mühle, K.: Colloids Surfaces 22 (1987) 249CrossRefGoogle Scholar
  17. [17]
    Mitsuo, Y.: Int. J. Min. Proc. 4 (1977) 293CrossRefGoogle Scholar
  18. [18]
    Firth, B.A., Hunter, R.-J.: J. Colloid Interface Sci. 57(1976) 248, 266Google Scholar
  19. [19]
    Matsuo, T., Unno, H.: J. Environm. Eng. Div., ASCE, EE3 107 (1981) 527Google Scholar
  20. [20]
    Hogg, R.: Proc. 3rd Int. Symp. Agglomeration, Nürnberg 1981, pp. E51–E68Google Scholar
  21. [21]
    Babenkov, E.D.: Chim. Technol. Vody, USSR 3 (1981) 212Google Scholar
  22. [22]
    Domasch, K., Miihle, K., Ivanauskas, A.: Chem. Technik 38 (1986) 384Google Scholar
  23. [23]
    Mühle, K.: Freiberger Forschungshefte A 720 (1985) 22Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Klaus Mühle
    • 1
  • Klaus Domasch
    • 1
  1. 1.Research Institute of Mineral ProcessingAcademy of Sciences of GDRFreibergGermany

Personalised recommendations