Skip to main content

Fossil Two-Dimensional Turbulence in the Ocean

  • Conference paper
Turbulent Shear Flows 7

Abstract

Turbulence in the stratified ocean is constrained at large vertical scales by buoyancy forces, leaving remnant internal waves and temperature and salinity fluctuations, termed fossil turbulence, that persist after the flow is no longer actively turbulent (with inertial-force dominated eddies) at the scales of the fluctuations. Most patches of ocean temperature microstructure are fossil turbulence (no longer turbulent) at the largest scales, and moving as buoyancy-dominated internal waves with embedded active turbulent motions (if any) only at smaller scales. Larger scale two-dimensional turbulent motions may grow in the horizontal until contrained by Coriolis forces to form eddy-like Coriolis-inertial “waves” with embedded, smaller scale, active 2-D and 3-D turbulence. The remnant horizontal fluctuations in the scalar and vorticity fields that persist after the fluid motions are no longer active 2-D turbulence at the scale of the fluctuations are termed fossil 2-D turbulence. By preserving the largest scales L wo of the previous active 2-D turbulence the 2-D fossils preserve information about the dissipation rate ε0 that existed when fossilization of the 2-D turbulence began assuming L w0 = C Ω L Ω 0, where L Ω 0 = (ε 0/f 3)1/2 is the Coriolis-inertial (or Hopfinger) length scale at fossilization, f is the Coriolis parameter 2Ω sin Φ, Ω is the rotation rate, Φ is the latitude and C Ω is a universal constant of order 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, M. A., Gibson, C. H. (1987): Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J. of Phys. Oceanogr. 17, 1817–1837

    Article  ADS  Google Scholar 

  • Fedorov, K. N. (1986): Lecture notes on Coastal and Estuarine Studies, Vol. 19: The physical Nature and Structure of Oceanic Fronts, Springer-Verlag, Berlin

    Google Scholar 

  • Flierl, G. R., Stern, M. E., Whitehead, J. A. (1983): The physical significance of modons: Laboratory experiments and general integral constraints. Dynamics of Atmospheres and Oceans 7, 233–263

    Article  ADS  Google Scholar 

  • Friehe, C. A., Van Atta, C. W., Gibson, C. H. (1971): Jet turbulence: dissipation rate measurements and correlations. in Agard Conf. Proc., CP 93, no. 18, 18.1–18.7

    Google Scholar 

  • Gibson, C. H. (1980): Fossil temperature, salinity, and vorticity turbulence in the ocean. in Marine Turbulence, J. Nihoul (Ed.), Elsevier Publishing Co., Amsterdam, 221–257

    Google Scholar 

  • Gibson, C. H. (1981): Fossil turbulence and internal waves. in American Institute of Physics Conference Proceedings No 76: Nonlinear Properties of Internal Waves, Bruce West (Ed.), American Institute of Physics, 159–179

    Google Scholar 

  • Gibson, C. H. (1982a): Alternative interpretations for microstructure patches in the thermocline. J. Phys. Oceanogr. 12, 374–383

    Article  ADS  Google Scholar 

  • Gibson, C. H. (1982b): On the scaling of vertical temperature gradient spectra. J. Geophys. Res. 87, C10, 8031–8038

    Article  ADS  Google Scholar 

  • Gibson, C. H. (1982c): Fossil turbulence in the Denmark Strait. J. Geophys. Res. 87, C10, 8039–8046

    Article  ADS  Google Scholar 

  • Gibson, C. H. (1983): Turbulence in the equatorial undercurrent core. in Hydrodynamics of the Equatorial Ocean, J. C. H. Nihoul (Ed.), Elsevier Publishing Company, Amsterdam, 131–154

    Chapter  Google Scholar 

  • Gibson, C. H. (1986): Internal Waves, fossil Turbulence, and composite ocean microstructure spectra. J. Fluid Mech. 168, 89–117

    Article  ADS  Google Scholar 

  • Gibson, C. H. (1987a): Oceanic turbulence; big bangs and continuous creation. J. Physicochem. Hydrodyn. 8 (1), 1–22

    MathSciNet  Google Scholar 

  • Gibson, C. H. (1987b): Fossil turbulence and intermittency in sampling oceanic mixing processes. J. Geophys. Res. 92, C5, 5383–5404

    Article  ADS  Google Scholar 

  • Gibson, C. H. (1990b): Hydrodynamic phase diagrams for microstructure in stratified flows. Proceedings: Third International Symposium on Stratified Flows, Pasadena, Feb. 3–5, 1987, J. List and G. H. Jiska (Eds.), American Society of Civil Engineers CP 775, 276–290

    Google Scholar 

  • Gibson, C. H. (1988a): Evidence and consequences of fossil turbulence in the ocean. in Small Scale Turbulence and Mixing in the Ocean, J. C. H. Nihoul and B. M. Jamart (Eds.), Elsevier Publishing Company, Amsterdam, 319–334

    Google Scholar 

  • Gibson, C. H. (1988b): Comment on: Reynolds number effects on turbulence in the presence of stable stratification, by A. E. Gargett. in Small Scale Turbulence and Mixing in the Ocean, J. C. H. Nihoul and B. M. Jamart (Eds.), Elsevier Publishing Company, Amsterdam, 529–530

    Google Scholar 

  • Gibson, C. H. (1989): Fossil turbulence in rotating, stratified flows, in Europhysics Conference Abstracts, (Proceedings of the Fifth European Physical Society Liquid State Conference, On Turbulence, Moscow, October 16–21, 1989), K. Bethge and G. Thomas (eds.), European Physical Society, Geneva, 227–230

    Google Scholar 

  • Gibson, C. H. (1990a): Turbulence, Mixing and Microstructure. in The Sea-Vol. 9 Ocean Engineering Science, Wiley Interscience, New York, 631–659

    Google Scholar 

  • Gibson, C. H. (1991): Turbulence. in Encyclopedia of Physics, R. G. Lerner and G. L. Trigg (eds.), Addison-Wesley, New York, 1310–1314.

    Google Scholar 

  • Hopfinger, E. J., F. K. Browand, and Y. Gagne (1982): Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505–534

    Article  ADS  Google Scholar 

  • Mory, M. and E. J. Hopfinger (1988): Rotating Turbulence Evolving Freely from an Initial Quasi 2D State. in Lecture Notes in Physics 230, 16–88, Macroscopic Modelling of Turbulent Flows (Proceedings of a workshop held at INRIA, Sophia-Antipolis, France, December 10–14, 1984), Eds. U. Frisch, J. B. Keller, G. Papanicolaou, O. Pironneau, Springer-Verlag, Berlin, 218–236

    Google Scholar 

  • Müller, P. (1988): Vortical motions. in Small Scale Turbulence and Mixing in the Ocean, J. C. H. Nihoul and B. M. Jamart (Eds.), Elsevier Oceanography Series, Elsevier Publishing Company, Amsterdam, 285–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibson, C.H. (1991). Fossil Two-Dimensional Turbulence in the Ocean. In: Durst, F., Launder, B.E., Reynolds, W.C., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76087-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76087-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76089-1

  • Online ISBN: 978-3-642-76087-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics