Advertisement

On the importance of pictorial representations for the symbolic / subsymbolic distinction

  • Michael Mohnhaupt
Conference paper
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 252)

Abstract

This paper is concerned with representational aspects of cognition. It is based on the two assumptions: that cognition is information processing and 2) that mental representations and their manipulation are essential for cognitive processes. Both assumptions are the basis of the cognitive science research program. Given these assumptions there are mainly two different representational positions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Adorni and Di Manzo 83]
    Top-down Approaches to Scene Interpretation. G. Adorni, M. Di Manzo. Proc. CIL 83, Barcelona, Spain, June 1983.Google Scholar
  2. [Andre + Bosch i Herzog + Rist 86]
    Characterizing Trajectories of Moving Objects Using Natural Language Path Descriptions. E. Andre, G. Bosch, G. Herzog, T. Rist. in Proc. 7th ECAI, 1986.Google Scholar
  3. [Binford 82]
    Survey of Model-Based Image Analysis Systems. Thomas O. Binford. International Journal of Robotics 1 (1982) 18–64.Google Scholar
  4. [Boden 88]
    Computer Models of Mind. Margret A. Boden. Cambridge University Press, 1988.Google Scholar
  5. [Boff + Kaufman + Thomas 86]
    Handbook of Perception and Human Performance, Volume I + II. Kenneth R. Boff, Lloyd Kaufman, James P. Thomas. John Wiley and Sons, 1986.Google Scholar
  6. [Chandrasekaran ± Goel+Allemang 88]
    Connectionism and Information-Processing Abstractions. B. Chandrasekaran, Ashok Goel, Dean Allemang. Al Magazine Winter (1988) 24–34.Google Scholar
  7. [Clark 89]
    Connectionism and the multiplicity of mind. A. Clark. Artificial Intelligence Review 3 (1989) 49–65.Google Scholar
  8. [Denis} Engelkamp -4- Richardson 88]
    Cognitive and Neuropsychological Approaches to Mental Imagery. M. Denis, J. Engelkamp, J. T. E. Richardson (Ed.). Martins Nijhoff Publisher 1988.Google Scholar
  9. [Farah 85]
    A neurological basis of mental imagery: A componential analysis. Martha J. Farah. in ‘Visual Cognition’, Steven Pinker (Ed.), MIT Press 1985.Google Scholar
  10. [Farah 85]
    Psychophysical Evidence for a Shared Representational Medium for Mental Images and Percepts. Martha J. Farah. Journal on Experimental Psychology: General 114 (1985) 91–103.Google Scholar
  11. [Farah + Hammond 88]
    Mental rotation and orientation-invariant object recognition: Dissociable processes. Martha J. Farah, Katherine M. Hammond. Cognition 29 (1988) 29–46.Google Scholar
  12. [Farah + Hammond + Levine t Calvanio 88]
    Visual and Spatial Mental Imagery: Disassociable Systems of Representations. Martha J. Farah, Katherine M. Hammond, David N. Levine, Ronald Calvanio. Cognitive Psychology 20 (1988) 439–462.Google Scholar
  13. [Farah + Peronnet + Cotton + Giard 88]
    Electrophysiological Evidence for a Shared Representational Medium for Visual Images and Visual Percepts. Martha J. Farah, Franck Peronnet, Marie A. Gonon, Marie H. Giard. Journal of Experimental Psychology: General 117 (1988) 248–257.Google Scholar
  14. [Finke 85]
    Theories Relating Mental Imagery to Perception. Ronald A. Finke. Psychological Bulletin 98 (1985) 236–259.Google Scholar
  15. [Finke 89]
    Principles of mental imagery. Ronald A. Finke. A Bradford Book, MIT Press 1989.Google Scholar
  16. [Finke + Shepard 86]
    Visual Functions of Mental Imagery. Ronald A. Finke, Roger N. Shepard. in Boff - Kaufman 1 Thomas 86.Google Scholar
  17. [Fodor 81]
    Representations. Jerry A. Fodor. MIT Press, Cambridge, Mass. 1981.Google Scholar
  18. [Fodor + Pylyshyn 88]
    Connectionism and Cognitive Architecture: A Critical Analysis. Jerry A. Fodor, Zenon W. Pylyshyn. Cognition 28 (1988) 3–71.Google Scholar
  19. [Funt 80]
    Problem solving with diagrammatic representations. B. V. Funt. Artificial Intelligence 13 (1980) 201–230.Google Scholar
  20. [Gardin + Meltzer 89]
    Analogical Representation of Naive Physics. Francesco Gardin, Bernhard Meltzer. Artificial Intelligence 38 (1989) 139–159.Google Scholar
  21. [Gelernter 63]
    Realization of a geometry theorem-proving machine. H. Gelernter. in ‘Computer and thought’, E. Feigenbaum and J. Feldman (Ed.), McGraw Hill 1963.Google Scholar
  22. [Kosslyn 80]
    Image and Mind. Stephen M. Kosslyn. Harvard University Press, 1980.Google Scholar
  23. [Kosslyn 87]
    ]Seeing and Imagining in the Cerebal Hemispheres: A Computational Approach. Stephen M. Kosslyn. Psychological Review, 94, 1987, pp. 148–175.Google Scholar
  24. [Kosslyn + Cave + Provost + Gierke 88]
    Sequential Processes in Image Generation. Stephen M. Kosslyn, Carolyn Backer Cave, David A. Provost, Susanne M. von Gierke. Cognitive Psychology 20 (1988) 319–343.Google Scholar
  25. [Larkin + Simon 87]
    Why a Diagramm is (Sometimes) Worth Ten Thousand Words. Jill H. Larkin, Herbert A. Simon. Cognitive Science 11 (1987) 65–99.Google Scholar
  26. [Levesque 86]
    Making Believers out of Computers. Hector J. Levesque. Artificial Intelligence 30 (1986) 81108.Google Scholar
  27. [Lindsay 88]
    Images and inference. Robert K. Lindsay. Cognition 29 (1988) 229–250.Google Scholar
  28. [Marr 82]
    Vision. David Marr. W. H. Freeman, San Francisco 1982.Google Scholar
  29. [Marschark 88]
    The Functional Role of Imagery in Cognition. Marc Marschark. in Denis t Engelkamp + Richardson 88,pp. 405–417.Google Scholar
  30. [Minsky 85]
    The Society of Mind. Marvin Minsky. Touchstone Book, Simon and Schuster, 1985.Google Scholar
  31. [Mohnhaupt + Neumann 89]
    Some aspects of learning and reorganisation in an analogical representation. Michael Mohnhaupt, Bernd Neumann in ‘Knowledge representation and organisation in machine learning’, K. Morik (Ed.), Lecture Notes in Artificial Intelligence, Springer Verlag 1989, pp. 50–69.Google Scholar
  32. [Mohnhaupt + Neumann 90a]
    Understanding Object Motion: Recognition, Learning and Spatio-Temporal Reasoning. Michael Mohnhaupt, Bernd Neumann. to appear in ‘Journal of Robotics and Autonomous Systems’, North Holland 1990.Google Scholar
  33. [Mohnhaupt + Neumann 90b]
    On the Use of Motion Concepts for Top-Down Control in Traffic Scenes. Michael Mohnhaupt, Bernd Neumann Proc. European Conf. on Computer Vision ECCV-1, 1990, 598–601, Antibes (France), O. Faugeras (Ed.), Springer Verlag.Google Scholar
  34. [Mohnhaupt + Neumann 90c]
    Support for an intermediate pictorial representation. Michael Mohnhaupt, Bernd Neumann. Commentary, to appear in The Behavioral and Brain Science 13 (1990).Google Scholar
  35. [Neumann + Novak 83]
    Event models for recognition and natural-language description of events in real-world image sequences. Bernd Neumann, Hans-Joachim Novak. Proc. Int. Joint Conf. on Art. Intell. IJCAI -8, 1983, 724–726.Google Scholar
  36. [Neumann + Novak 86]
    NA OS: Ein System zur natslrlichsprachlichen Beschreibung zeitveränderlicher Szenen. Bernd Neumann, Hans-Joachim Novak. Informatik Forsch. Entw. 1 (1986) 83–92.Google Scholar
  37. [Newell 80]
    Physical Symbol Systems. Allan Newell. Cognitive Science 4 (1980) 135–83.Google Scholar
  38. [Palmer 78]
    Fundamental Aspects of Cognitive Representation. S. P. Palmer. in: E. Rosch, B.B. Lloyd (Ed.): Cognition and Categorisation, Hillsdale, N.Y.: Erlbaum Press 1978.Google Scholar
  39. [Paivio 71]
    Imagery and verbal processes. Allan Paivio. Holt, Rinehart and Winston, New York 1971. [Phillips 83] Short-term visual memory. W. A. Phillips. Phil. Trans. R. Soc. Lond., B 302, pp. 295–309, 1983.Google Scholar
  40. [Pinker 85]
    Visual Cognition: An Introduction. Steven Pinker. in ‘Visual Cognition’, Steven Pinker (Ed.), MIT Press 1985.Google Scholar
  41. [Pinker 88]
    A computational theory of the mental imagery medium. Steven Pinker. in Denis + Engelkarnp Richardson 88,pp. 17–32.Google Scholar
  42. [Pinker + Kosslyn 83]
    Imagery: Current Theory, Research and Application’, New York, Wiley 1983.Google Scholar
  43. [Pribbenow 90]
    Interaktion von propositionalen und bildhaften Repräsentationen. Simone Pribbenow. in ‘Repräsentation und Verarbeitung räumlichen Wissens’, C. Freksa und C. Babel (Hrsg.), Springer Verlag 1990.Google Scholar
  44. [Provan 90]
    An analysis of knowledge representation schemes for high-level vision. Gregory M. Provan. Proc. European Conf. on Computer Vision ECCV-1, 1990, 537–41, Antibes (France), O. Faugeras (Ed.), Springer Verlag.Google Scholar
  45. [Pylyshyn 84]
    Computation and Cognition. Zenon W. Pylyshyn. MIT Press, Cambridge, Mass. 1984. [Pylyshyn 87] What’s in a Mind. Zenon W. Pylyshyn. Synthese 70 (1987) 97–122.Google Scholar
  46. [Rehkämper 87]
    Mentale Bilder und Wegbedeutungen. Klaus Rehkämper. Proc. German Workshop on Artificial Intelligence G WAI-11, 1987, 296–305.Google Scholar
  47. [Rehkämper 88]
    Mentale Bilder - Analoge Repräsentationen. Klaus Rehkämper. LILOG-Report 65, IBM Deutschland, Oktober 1988.Google Scholar
  48. [Reiter + Mackworth 90]
    A Logical Framework for Depiction and Image Interpretation. Raymond Reiter, Alan K. Mackworth. Artificial Intelligence 41 (1990) 125–155.Google Scholar
  49. [Rosch 78]
    Principles of Categorization. Eleanor Rosch. in: E. Rosch, B.B. Lloyd (Ed.): Cognition and Categorisation, Hillsdale, N.Y.: Erlbaum Press 1978.Google Scholar
  50. [Rosch + Mervis + Gray + Johnson + Boyes-Bream 76]
    Basic Objects in Natural Categories. Eleanor Rosch, Corolyn B. Mervis, Wayne D. Gray, David M. Johnson, Penny Boyes-Bream. Cognitive Psychology 8 (1976) 382–439.Google Scholar
  51. [Rumelhart + McClelland 87]
    Parallel Distributed Processing I + II. David E. Rumelhart, James L. McClelland and the PDP research group. MIT Press, Cambridge, Mass. 1987.Google Scholar
  52. [Shepard 78]
    The Mental Image. Roger N. Shepard. American Psychologist 33 (125–137).Google Scholar
  53. [Smolensky 88]
    On the Proper Treatment of Connectionism. P. Smolensky. The Behavioral and Brain Science 11 (1988) 1–74.Google Scholar
  54. [Steels 88]
    Steps Towards Common Sense. Luc Steels. Proc. 8th ECAI, 1988, pp. 49–54.Google Scholar
  55. [Steels 90]
    Exploiting Analogical Representations. Luc Steels. to appear in ‘Journal of Robotics and Autonomous Systems’, North Holland 1990.Google Scholar
  56. [Sterelny 86]
    The Imagery Debate. Kim Sterelny. Philosophy of Science 53 (1986) 560–85.Google Scholar
  57. [Tsotsos 87]
    Image Understanding. John K. Tsotsos. in: S. Shapiro (Ed.), The encyclopedia of artificial intelligence, 389–409, John Wiley and Sons, New York.Google Scholar
  58. [Tsotsos 90]
    Analyzing Vision at the Complexity Level. John K. Tsotsos. to appear in The Behavioral and Brain Science (1990), Cambridge University Press.Google Scholar
  59. [Waltz + Boggess 79]
    Visual Analog Representations for Natural Language Understanding. David L. Waltz, Lois Boggess. Proc. Int. Joint Conf. on Art. Intell. IJCAI-6, 1979, 926–934.Google Scholar
  60. [Zimmer + Engelkamp 88]
    Informationsverarbeitung zwischen Modalitätsspezifität und propositionalem Einheitssystem. Hubert D. Zimmer, Johannes Engelkamp. in ‘Wissensarten und ihre Darstellung’, G. Heyer u.a. (Hrsg.), Springer Verlag 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Michael Mohnhaupt
    • 1
  1. 1.Department of Computer ScienceUniversity of HamburgHamburg 50Germany

Personalised recommendations