Productivity and New Production of the Oceanic System

  • George A. Knauer
Part of the NATO ASI Series book series (volume 4)

Abstract

Until the radiocarbon method for estimating primary production was developed by Steeman-Nielsen (1952), our understanding of global productivity distributions was, at best, rudimentary. Using this new technique, Steeman-Nielsen and Jensen (1957) collected over 700 measurements during the globe-circling Galathea expedition and produced the first semiquantitative maps of primary production. The earliest quantitative map of global primary production was that of Fleming (1957). While based on the Galathea data, Fleming’s map used both biological and physical oceanographic data in selecting distributional patterns.

Keywords

Dioxide Chlorophyll Depression Urea Phytoplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel M. V. (1984) Detrital organic fluxes through marine ecosystems. In: Flows of energy and materials in marine ecosystems (ed. M. J. R. Fasham). Plenum, pp. 475Google Scholar
  2. Bender M. L., Grande K., Johnson J., Marra J., Williams P. J. LeB., Sieburth J., Pilson M., Langdon C., Hitchcock G., Orchardo J., Hunt C., Donaghay P. and Heinemann K. (1987) A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32, 1085–1098.CrossRefGoogle Scholar
  3. Berger W. H., Fischer K., Lai C. and Wu G. (1987) Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. U. C. San Diego, SIO, Ref. 87–30.Google Scholar
  4. Berger W. H., Fischer K., Lai C. and Wu G. (1988) Ocean carbon flux: Global maps of primary production and export production. In: Biogeochemical cycling and fluxes between the deep euphotic zone and other oceanic realms (ed. C. R. Agegian ). NOAA, National Undersea Research Program research report 88–1, pp. 131–176.Google Scholar
  5. Betzer P. R., Showers W. J., Laws E. A., Winn C. D., Ditullio G. R. and Kroopnick P. M. (1984) Primary productivity and particle fluxes on a transect of the equator at 153° W in the Pacific Ocean. Deep-Sea Res. 31, 1–11.CrossRefGoogle Scholar
  6. Brewer P. G., Bruland K. W., Eppley R. W. and McCarthy J. J., (1986) The global ocean flux study (GOFS): Status of the U. S. GOFS program. EOS 67, 827–832.CrossRefGoogle Scholar
  7. Carpenter E. J. and Lively J. S. (1980) Review of estimates of algal growth using 14C tracer techniques. In: Primary productivity in the sea (ed. P. G. Falkowski ), Plenum, New York, London, pp. 161–168.Google Scholar
  8. Chevez F. B., Barber R. T., (1987) An estimate of new production in the equatorial Pacific. Deep-Sea Res. 34, 1229–1243.CrossRefGoogle Scholar
  9. Coale K. H. and Bruland K. W. (1985) 234Th:238U disequilibrium within the California Current. Limnol. Oceanogr. 30, 22–33.CrossRefGoogle Scholar
  10. Codispoti L. A., Friedrich G. E. and Hood D. W. (1986) Variability in the inorganic carbon system over the southeastern Bering Sea shelf during spring 1980 and spring-summer 1981. Cont. Shelf. Res. 5, 133–160.CrossRefGoogle Scholar
  11. Davies J. M. and Williams P. J. LeB. (1984) Verification of 14C and O2 derived primary production using an enclosed ecosystem. J. Plank. Res. 6, 457–474.CrossRefGoogle Scholar
  12. Deuser W. G. (1986) Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography. Deep-Sea Res. 33, 225–246.CrossRefGoogle Scholar
  13. Dugdale R. C. and Goering J. J. (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196–206.CrossRefGoogle Scholar
  14. Eppley R. W. and Peterson B. J. (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680.CrossRefGoogle Scholar
  15. Eppley R. W. (1982) The PRPOOS program: A study of plankton rate processes in oligotrophic oceans. EOS 163, 522.CrossRefGoogle Scholar
  16. Eppley R. W., Renger E. H. and Betzer P. R. (1983) The residence time of particulate organic carbon in the surface layer of the oceans. Deep-Sea Res. 30, 311–323.CrossRefGoogle Scholar
  17. Eppley R. W. (1989) New production: History, Methods, Problems. In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp. 85–97.Google Scholar
  18. Fasham M. J. R., Ducklow H. W., McKelvie S. M. (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591–639.Google Scholar
  19. Fitzwater S. E., Knauer G. A. and Martin J. H. (1982) Metal contamination and its effects on primary production measurements. Limnol. Oceanogr. 27, 544–551.CrossRefGoogle Scholar
  20. Fleming R. H. (1957) General features of the ocean. In: Geol. Soc. Amer. Mem. (ed. J. W. Hedgpeth) 67, 87–107.Google Scholar
  21. Fowler S. W. and Knauer G A (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 16, 147–194.CrossRefGoogle Scholar
  22. Gieskes W. W. C., Kraay W. and Baars M. A. (1979) Current 14C methods for measuring primary production: Gross underestimates in oceanic waters. Neth. J. Sea Res. 13, 58–78.CrossRefGoogle Scholar
  23. Global Ocean Flux Study (1984) Proceedings of a workshop, Woods Hole Oceanographic Institution, Woods Hole, MA. Natl Acad Press, 360 p.Google Scholar
  24. Glibert P. M., Douglas C. B., McCarthy J. J. (1982) Utilization of ammonium and nitrate during austral summer in the Scotia Sea. Deep-Sea Res. 29, 837–850.CrossRefGoogle Scholar
  25. Harrison W. G. (1980) Nutrient regeneration and primary production in the sea. In: Primary Productivity in the sea (ed. P. G. Falkowski ). Plenum, New York, pp. 433.Google Scholar
  26. Harrison W. G., Platt T. and Lewis M. R. (1987) F-ratio and its relationship to ambient nitrate concentration in coastal waters. J. Plank. Res. 9, 235–248.CrossRefGoogle Scholar
  27. Harrison W. G., Karl D. M., Knauer G. A. and Redalje D. G. (1991) Nitrogen cycling at the VERTEX time series site. (in press)Google Scholar
  28. Iverson R. L. (1990) Control of marine fish production. Linmol. Oceanogr. 35, 1593–1604.CrossRefGoogle Scholar
  29. Jenkins W. J. (1982) Oxygen utilization rates in the North Atlantic Subtropical Gyre and primary production in oligotrophic systems. Nature 300, 246–248.CrossRefGoogle Scholar
  30. Jenkins W. J. and Goldman J. C. (1985) Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43, 465–491.CrossRefGoogle Scholar
  31. Jenkins W. J. (1988) Nitrate flux into the euphotic zone near Bermuda. Nature 331, 521–523.CrossRefGoogle Scholar
  32. Karl D. M., Knauer G. A. and Martin J. H. (1988) Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441.CrossRefGoogle Scholar
  33. Kerr R. A. (1983) Are the ocean’s deserts blooming? Science 220, 397–398.CrossRefGoogle Scholar
  34. Knauer G. A and Martin J. H. (1981a) Trace elements and primary production: problems, effects and solutions. In: Trace Metals in Seawater (eds. C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg NATO Conf. Series IV: Marine sciences, V. 9, pp. 825–840.Google Scholar
  35. Knauer G. A., Martin J. H. (1981b) Primary production and carbon-nitrogen fluxes in the upper 1500m of the northeast Pacific. Limnol. Oceanogr. 26, 181–186.CrossRefGoogle Scholar
  36. Knauer G. A., Martin J. H. and Karl D. M. (1984) The flux of particulate organic matter out of the euphotic zone. In: Global Ocean Flux Study: proceedings of a workshop. Woods Hole Oceanographic Institution, Woods Hole, MA. Natl. Acad. Press, pp. 136–150e.Google Scholar
  37. Knauer G. A., Redalje D. G., Harrison W. G. and Karl D. M. (1990) New production at the VERTEX time-series site. Deep-Sea Res. 37, 1121–1134.CrossRefGoogle Scholar
  38. Koblents-Mishke O. I., Volkovinskiy V. V. and Kabanova Yu G. (1970) Plankton primary production of the world ocean. In: Scientific exploration of the South Pacific. Wooster W. (ed) Natl. Acad. Sci., Washington, D. C., pp. 183–193.Google Scholar
  39. Laws E. A., Ditullio G. R. and Redalje D. G. (1987) High phytoplankton growth and production rates in the North Pacific Subtropical Gyre. Limnol. Oceanogr. 32, 905–918.CrossRefGoogle Scholar
  40. Leinen M. and Murray J W (1990) A rationale and plan for U. S. Joint Global Ocean Flux Studies in the Central Equatorial Pacific. U. S. JGOFS Planning Office, Woods Hole Oceanographic Institution, Woods Hole, MA., 37 p.Google Scholar
  41. Lohrenz S. E., Knauer G. A., Asper V. A. and Knap A. H. (1990) Observations of primary production and particle flux at the GOFS Bermuda Time-Series site. EOS 71, 160.Google Scholar
  42. Lohrenz S. E., Knauer G. A., Asper V. L., Tuel M., Knap A. H. and Michaels A. F. (1992) Seasonal variability in primary production and particle flux in the northwestern Sargasso Sea. Deep-Sea Res. (in press)Google Scholar
  43. Longhurst A. R. and Harrison W G (1989) The biological pump: Profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 22, 47–123.CrossRefGoogle Scholar
  44. Marra J. and Heinemann K. R. (1987) Primary production in the North Pacific Central Gyre: Some new measurements based on 14C. Deep-Sea Res. 34, 1821–1829.CrossRefGoogle Scholar
  45. Martin J. H., Knauer G. A., Karl D. M. and Broenkow W. W. (1987) VERTEX: Carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285.CrossRefGoogle Scholar
  46. McCave I. N. (1975) Vertical flux of particles in the ocean. Deep-Sea Res. 22, 491–502.Google Scholar
  47. Menzel D. W. and Ryther J. H. (1960) The annual cycle of primary production in the Sargasso Sea off Bermuda. Deep-Sea Res. 6, 351–367.Google Scholar
  48. Menzel D. W. and Ryther J. H. (1961) Annual variations in primary production of the Sargasso Sea off Bermuda. Deep-Sea Res. 7, 282–288.CrossRefGoogle Scholar
  49. Minas H. J., Minas M. and Packard T. T. (1986) Productivity in upwelling areas deduced from hydrographic and chemical fields. Limnol. Oceanogr. 31, 1180–1204.CrossRefGoogle Scholar
  50. Murray J. W., J. N. Downs, Strom S., Wie C. and Jannasch H. W. (1989) Nutrient assimilation, export production and 234Th scavenging in the eastern equatorial Pacific. Deep-Sea Res. 36, 1471–1489.CrossRefGoogle Scholar
  51. Pace M. L., Knauer G. A., Karl D. M. and Martin J. H. (1987) Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature 325, 803–804.CrossRefGoogle Scholar
  52. Peterson B. J. (1980) Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Annu. Rev. Ecol. Syst. 11, 359–385.CrossRefGoogle Scholar
  53. Platt T. and Subba Rao D. V. (1975) Primary production of marine microphytes. Photosynthesis and productivity in different environments. In: International Biological Program V. 3, Cambridge Univ. Press, pp. 249–279.Google Scholar
  54. Platt T. (1984) Primary productivity in the central North Pacific: Comparison of oxygen and carbon fluxes. Deep-Sea Res. 31, 1311–1319.CrossRefGoogle Scholar
  55. Platt T. and Harrison W. G. (1985) Biogenic fluxes of carbon and oxygen in the ocean. Nature 318, 55–58.CrossRefGoogle Scholar
  56. Ryther J. H. (1969) Photosynthesis and fish production in the sea. Science 166, 72–76.CrossRefGoogle Scholar
  57. Shulenberger E. and Reid J. L. (1981) The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity reconsidered. Deep-Sea Res. 28, 901–919.CrossRefGoogle Scholar
  58. Smith S. V., Kimmerer W. S. and Walsh T. S. (1986) Vertical flux and biogeochemical turnover regulate nutrient limitation of net organic production in the North Pacific Gyre. Linmol. Oceanogr. 31, 161–167.CrossRefGoogle Scholar
  59. Steeman-Nielsen E. (1952) The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18, 117–140.Google Scholar
  60. Steeman-Nielsen E. and Jensen E. (1957) Primary oceanic production, the autotrophie production of organic matter in the oceans. Galathea Rep. 1, 49–136.Google Scholar
  61. Suess E. (1980) Particulate organic carbon flux in the ocean-surface productivity and oxygen utilization. Nature 288, 260–263.CrossRefGoogle Scholar
  62. Taylor G. T. and Karl D. M. (1992) Biotic and biogenic sedimenting fluxes in the eastern North Pacific: Implication for productivity and biogeochemical cycling. Global Biogeochem. Cycles (in press).Google Scholar
  63. Toggweiler J. R. (1989) Is the downward dissolved organic matter (DOM) flux important in carbon transport? In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp. 65–83.Google Scholar
  64. Trabalka J. R. (1985) U. S. Department of Energy report DOE lER-0239 atmospheric carbon dioxide and the global carbon cycle. pp. 1.Google Scholar
  65. U. S. Joint Global Ocean Flux Study (1990) Report #11. U. S. JGOFS Planning and Coordination Office, Woods Hole Oceanographic Institution, Woods Hole, MAGoogle Scholar
  66. Williams P. J. LeB., Heinemann K. R., Marra J. and Purdie D. A. (1983) Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters. Nature 305, 49–50.CrossRefGoogle Scholar
  67. Williams P. J. LeB., von Bodungen B., Bathmann U., Berger W. H., Eppley R. W., Feldman G. C., Fischer G., Legendre L., Minster J.-F., Reynolds C. S., Smetacek V. S. and Toggweiler J. R. (1989) Export productivity from the photic zone. In: Productivity of the Ocean:Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp. 99–115.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • George A. Knauer
    • 1
  1. 1.Center for Marine ScienceUniversity of Southern Mississippi NASA, John C. Stennis Space Center Stennis Space CenterUSA

Personalised recommendations