C, N, P and S in Rivers: From Sources to Global Inputs

  • M. Meybeck
Part of the NATO ASI Series book series (volume 4)


Carbon, nitrogen, phosphorus and sulfur are essential elements found either as dissolved or particulate river-borne material. Their origins, their behaviours in aquatic systems, the occurrence of their specific forms, and the rates of transport by rivers are first considered in this paper. The anthropogenic influences on riverine C, N, P, and S are briefly presented. Finally the global fluvial budgets of the specific forms, including the anthropogenic loads are estimated.


Total Organic Carbon Total Suspended Solid Dissolve Inorganic Carbon Particulate Organic Carbon Particulate Nitrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgartner A. and Reichel E. (1975) The World Water Balance. Elsevier, Armsterdam, 179 p.Google Scholar
  2. Berner R. A. (1971) Worldwide sulfur pollution of rivers. J. Geophys. Res. 76, 6597–6600.CrossRefGoogle Scholar
  3. Berner E. K. and Berner R. A. (1987) The Global Water Cycle, Geochemistry and Environment. Prentice Hall, Englewood Cliffs, New Jersey, 397 p.Google Scholar
  4. Brinkmann W. L. F. (1986) Particulate and dissolved material in the Rio Negro - Amazon asin. In: Sediments and Water Interaction (ed. P. G. Sly). Springer, pp. 3–12.Google Scholar
  5. Burrus D. (1984) Contribution It l’étude du transport en phosphore dans le Rhône Alpin. bThesis n° 2135, University of Geneva, 100 p.Google Scholar
  6. Burrus D., Thomas R. L., Dominik B., Vernet J. P. and Dominik J. (1990) Characteristics of suspended sediment in the upper Rhône river, Switzerland, including the particulate forms of phosphorus. Hydrological Processes 4, 85–98.CrossRefGoogle Scholar
  7. Degens E. T., Kempe S. and Richey J. E. (eds) (1991a) Biogeochemistry of Major World Rivers. SCOPE 42, John Wiley & Sons, Chichester, 356 p.Google Scholar
  8. Degens E. T., Kempe S. and Richey J. E. (1991b) Summary: Biogeochemistry of major world rivers. In: Biogeochemistry of World Major Rivers (eds. E. T. Degens, S. Kempe and J. E. Richey). SCOPE 42, John Wiley & Sons, Chichester, pp. 323–347.Google Scholar
  9. Dessery S., Dulac C., Laurenceau J. M. and Meybeck M. (1984) Evolution du carbone organique particulaire “algal” et détritique dans trois rivières du Bassin Parisien. Archiv fur Hydrobiologie 100, 235–260.Google Scholar
  10. Dreyer J. I. (1982) The Geochemistry of Natural Waters. Prentice Hall, New Jersey, 388 p.Google Scholar
  11. Feng Jian-Xiang and Kempe S (1987) The concentration and transport of major ions in the lower Huang He. Mitt. Geol. Paldont. Inst. Univ. Hamburg 64, 161–170.Google Scholar
  12. Garrels R. M. and Mackenzie F. T. (1972) Evolution of Sedimentary Rocks. WW Norton, New York, 397 p.Google Scholar
  13. GEMS Water (1987) Gems water data summary report 1982–1984. Canada Center Inland Waters, Burlington, Ont, 329 p.Google Scholar
  14. Gibbs R. J. (1970) Mechanism controlling world water chemistry. Science 170, 1088–1090.CrossRefGoogle Scholar
  15. Hem J. D. (1989)Study and interpretation of the chemical characteristics of natural waters. 3 rd ed. US Geol Sury Water Supply Paper 2254, 263 p.Google Scholar
  16. International Rhine Commission (1984). Annual Reports, BP 309, Koblenz, Germany. Ittekot V. (1988) Global trends in the nature of organic matter in river suspensions. Nature 332, 436–438.Google Scholar
  17. Ittekot V. and Zhang S. (1989) Pattern of particulate nitrogen transport in world rivers. Global Biogeochemical Cycles 3, 283–391.CrossRefGoogle Scholar
  18. Ittekot V., Safiullah S. and Arain R. (1986) Nature of organic matter in rivers with deepsea connections: the Ganges, Brahmaputra and Indus. Sci. Total Environment 58, 93–101.CrossRefGoogle Scholar
  19. Kobayashi J. (1959) Chemical investigation on river waters of Southeastern asiatic countries. Ber Ohara Inst. Landwirstchaft Biol. II, 3, 313–357.Google Scholar
  20. Kobayashi J. (1960) A chemical study of the average quality and characteristics of river waters of Japan. Ber Ohara Inst Landwirstchaft Biol. II, 3 313–357.Google Scholar
  21. Kempe S. (1984) Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters. J. Geophys. Res. 89, 4657–4676.CrossRefGoogle Scholar
  22. Kortelainen P. and Mannio J. (1988) Natural and anthropogenic acidity sources for finnish lakes. Water Air Soil Poll. 42 341–352.Google Scholar
  23. Lesack L. F. W., Hecky R. E. and Melack J. M. (1984) Transport of carbon, nitrogen, phosphorus, and major solutes int the Gambia river, West Africa, Limmol. Oceano. 29, 816–830.CrossRefGoogle Scholar
  24. Lewis W. M. and Saunders J. F. (1989) Concentration and transport of dissolved and suspended substances in the Orinoco river. Biogeochemistry 7, 203–240.CrossRefGoogle Scholar
  25. Malcolm R. L. and Durum W. H. (1976)Organic carbon and nitrogen concentration of annual organic carbon load in six selected rivers of the USA. US Geol Survey Water Supply Paper 1817, 21 p.Google Scholar
  26. Manickam S., Barbaroux L. and Ottmann F. (1985) Composition and mineralogy of suspended sediment in the fluvio-estuarine zone of the Loire river, France. Sedimentology 32, 721–741.CrossRefGoogle Scholar
  27. Mantoura R. F. C. and Woodward E. M. S. (1983) Conservative behaviour of riverine dissolved carbon in the Severn estuary: chemical and geochemical implications. Geochim. Comoschim. Acta 47, 1293–1310.CrossRefGoogle Scholar
  28. Messier D., Ingram R. G. and Roy D. (1986) Physical and biological modifications in reponse to La Grande hydroelectric complex. In: Canadian Inland Seas (ed. I. P. Martini ). Elsevier, Armsterdam, pp. 403–424.CrossRefGoogle Scholar
  29. Meybeck M. (1979) Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans. Rev. Geogr. Phys. Geol. Dyn. 21, 215–246.Google Scholar
  30. Meybeck M. (1982) Carbon, nitrogen and phosphorus transport by world rivers. Amer. J. Sci. 282, 401–450.CrossRefGoogle Scholar
  31. Meybeck M. (1985) Variabilité dans le temps de la composition chimique des rivières et de leurs transports en solution et en suspension. Rev. Fr. Sci. Eau 4, 93–121.Google Scholar
  32. Meybeck M. (1986) Composition chimique naturelle des ruisseaux non pollués en France. Sciences Géol Bull 39, 3–77.Google Scholar
  33. Meybeck M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Amer. J. Sci. 287, 401–428.CrossRefGoogle Scholar
  34. Meybeck M. (1988) How to establish and use world budgets of river material. In: Physical and Chemical Weathering in Geochemical Cycles (eds. A. Lerman and M. Meybeck). Kluwer, pp. 247–272.Google Scholar
  35. Meybeck M. (1992) Origins and variability of present-day riverborne material. In: Global Surficial Geofluxes (eds. W. Hay and T. Usselman). National Acad. Sciences, Washington DC, Studies in Geophysics. (in press)Google Scholar
  36. Meybeck M., Cauwet G., Dessery S., Somville M., Gouleau D. and Billen G. (1988) Levels, behaviour and tentative budgets of nutrients (organic C, P, N, Si) in the eutrophic Loire estuary. Estuar. Coast. Shelf Sci. 27, 595–624.CrossRefGoogle Scholar
  37. Meybeck M. and Helmer R. (1989) The quality of rivers: from pristine stage to global pollution. Pal. Pal. Pal. (Global Planet Change) 1, 283–309.Google Scholar
  38. Milliman J. D., Quinchun X. and Zuosheng Y. (1984) Transfer of particulate organic carbon and nitrogen from the Yangtze river to the ocean. Amer. J. Sci. 284, 824–834.CrossRefGoogle Scholar
  39. Milliman J. D. and Meade R. H. (1983) World-wide delivery of river sediments to the oceans. J. Geol. 91, 1–21.CrossRefGoogle Scholar
  40. Mulholland P. J., Dahm C. N., David M. B., Di Toro D. M., Fischer T. R., Hemond H. F., Kögel- Knabner I., Meybeck M., Meyer J. L. and Sedell J. R. (1990) What are the temporal and spatial variations of organic acids at the ecosystem level? In: Organic Acids in Aquatic Eosystems (eds. E. M. Perdue and E. T. Gjessing ). John Wiley & Sons, Chichester, pp. 315–329.Google Scholar
  41. Naves J., Bousquet G., Leroy P., Hubert P. and Vilagines R. (1990) Evolution de la qualité de l’eau de la Seine à Ivry-Sur-Seine (France) de 1887 à 1986. Int. Symp.: Application des modèles mathématiques à l’évolution des modifications de la qualité de l’eau, Int Ass Hydrol Sci, Tunis, 7–12 May 1990Google Scholar
  42. Nikanorov A. M. and Tsirkunov V. V. (1984) Study of the hydrochemical regime and its long term variations in the case of some rivers in USSR. In: Hydrochemical Balances of Freshwater Systems (ed. E. Erisksson). Int. Ass. Hydrol. Sci. Publ. 150, 288–293.Google Scholar
  43. Pettine M., La Noce T., Pagnotta R. and Puddu A. (1985) Organic and trophic load of major italian rivers. Mitt. Geol. Paläont. Inst. Univ. Hamburg 58, 417–429.Google Scholar
  44. Probst J. L. (1985) Nitrogen and phosphorus exportation in the Garonne basin (France). J. Hydrol. 76, 281–305.CrossRefGoogle Scholar
  45. Probst J. L. (1986) Dissolved and suspended matter transported by the Girou river (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrol. Sci. J. 31, 61–79.CrossRefGoogle Scholar
  46. Ramirez A., Rose A. W. and Bifano C. (1988) Transport of carbon and nutrients by the Tuy river, Venezuela. Mitt. Geol. Paläont. Inst. Univ. Hamburg 66, 137–146.Google Scholar
  47. Reeder S. W., Hitchon B. and Levinson AA (1972) Hydrogeochemistry of the surface waters of the Mackenzie river drainage basin, Canada. Factors controlling organic composition. Geochim. Cosmochim. Acta 36, 537–544.CrossRefGoogle Scholar
  48. Romankevich E. A. and Artemyev V. E. (1985) Inputs of organic carbon into seas and oceans bordering the territory of Soviet Union. Mitt. Geol. Paläont. Inst. Univ. Hamburg 58, 459–470.Google Scholar
  49. Ronov A. B. (1976) Global carbon geochemistry, volcanism, carbonate accumulation and life. Geochem. Int. 13, 172–195.Google Scholar
  50. Saunders J. F. and Lewis W. M. (1988) Transport of phosphorus, nitrogen, and carbon by the Apure river, Venezuela. Biogeochem. 5, 323–342.CrossRefGoogle Scholar
  51. Stallard R. F. (1980) Major element geochemistry of the Amazon river system. Ph.D Thesis, MIT - WHOI, Woods Hole Inst Ocean, Mass, WHOI - 8029, 362 p.Google Scholar
  52. Thurman E. M. (1985) Organic Geochemistry of Natural Waters. Martinus Nijhoff, Dortrech, 497 p.CrossRefGoogle Scholar
  53. Tremblay G. H. and Cossa D (1987) Major ions composition of the St Laurence river: variations since the start of industrialization. Mitt. Geol. Paläont. Inst. Univ. Hamburg 64, 289–293.Google Scholar
  54. Wafar M. V. M., Le Corre P. and Birrien J. 1. (1989) Transport of carbon, nitrogen, and phosphorus in a Brittany river, France. Est. Coast. Shelf Sci. 29, 489–500.CrossRefGoogle Scholar
  55. White W. B. (1984) Rate processes: chemical kinetics and karst landform development. In: Grounwater as a Geomorphologic Agent (ed. R. G. Lafleur). Allen and Unwin, Boston, pp. 227–248.Google Scholar
  56. Williams J. D. H., Jacquet J. M. and Thomas R. L. (1976) Forms of phosphorus in the surficial sediments of lake Erie. J. Fish. Res. Bd. Canada. 33, 413–429.CrossRefGoogle Scholar
  57. Wollast R. and Mackenzie F. T. (1983) The global cycle of silica. In: Silicon Geochemistry and Biogeochemistry (ed. S. Aston ). Academic Press, London, pp. 39–76.Google Scholar
  58. Zhang, S., Gan, W.-B. and Ittekot V. (1992) Organic matter in large turbid rivers: the Huang He and its estuary. Mar. Chem. (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Meybeck
    • 1
  1. 1.Laboratoire de Géologie AppliquéeUniversité de Paris VI - CNRSParis Cedex 05France

Personalised recommendations