The Nature of Phosphorus Burial in Modern Marine Sediments

  • Robert A. Berner
  • Kathleen C. Ruttenberg
  • Ellery D. Ingall
  • Ji-Long Rao
Part of the NATO ASI Series book series (volume 4)


Phosphorus is a key element in biogeochemical cycles because of its role as an essential nutrient. Because of the ability of certain marine organisms, such as cyanobacteria, to fix nitrogen, it has been normally assumed that the long term limiting factor in global oceanic productivity is phosphorus (e.g. Holland, 1978). Thus, a knowledge of phosphorus chemistry in the ocean is a key to a better understanding of the cycling of carbon, nitrogen, sulfur, and other bio-elements. Over shorter time scales, days to millenia, the cycle of phosphorus in the ocean is controlled by a combination of processes involving oceanic circulation, biosynthesis, sinking of particles, and bacterial regeneration of the particles at depth or on the sea floor (e.g. Berger et al., 1989). Consequently, concentrations of dissolved phosphorus in seawater vary from place to place as a result of the interaction of these processes. In this context sediments are important only as their surficial portions release additional dissolved phosphate to the overlying water. By contrast, sediments become much more important on longer time scales of tens of thousands to millions of years, because they are the ultimate repository for the removal of phosphate from the oceans. The overall level of phosphorus in the ocean, and therefore global biological productivity, is controlled by the long-term balance between input via rivers and output via burial in sediments.


Marine Sediment Ferric Oxide Sedimentary Organic Matter Organic Phosphorus Magic Angle Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller R. C., Mackin J. E. and Cox R. T. (1987) Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. In: Sedimentary Processes on the Amazon Continental Self (eds. C. A. Nittrouer and D. J. DeMaster ). Pergamon, Oxford, pp. 263–290.Google Scholar
  2. Arrhenius G. O. SO (1959) Sedimentation on the ocean floor. In: Researches in Geochemistry (ed. P. H. Abelson ). Wiley, New York, pp. 1–24.Google Scholar
  3. Aspila K. I., Agemian H. and Chau, A. S. Y. (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101, 187–197.CrossRefGoogle Scholar
  4. Berger W. H., Smetacek V. S. and Wefer G. (eds) (1989) Productivity of the Ocean: Present and Past. Wiley, New York, 471 p.Google Scholar
  5. Berner R. A. (1973) Phosphate removal from seawater by adsorption on volcanogenic ferric oxides. Earth Planet. Sci. Lett. 18, 77–86.CrossRefGoogle Scholar
  6. Berner, R. A. (1980) Early diagenesis: A Theoretical Approach. Princeton Univ. Press, Princeton, N. J., 241 p.Google Scholar
  7. Berner R. A. (1990) Diagenesis of phosphorus in sediments from non-upwelling areas. In Burnett W. C. and Riggs S. R. (eds) Genesis of Neogene to Modern Phosphorites. Cambridge University, Cambridge, pp. 27–32.Google Scholar
  8. Burnett W. C. (1977) Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geol. Soc. Am. Bull. 88, 813–823.CrossRefGoogle Scholar
  9. Canfield D. E. (1989) Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632.CrossRefGoogle Scholar
  10. Chase E. M. and Sayles F. L. (1980) Phosphorus in suspended sediments of the Amazon River. Estuar. Coastal. Mar. Sci. 11, 383–391.CrossRefGoogle Scholar
  11. Delwiche C. C. and Likens G. E. (1977) Biological response to fossil fuel combustion products. In Stumm W. (ed) Global Chemical Cycles and Their Alterations by Man. Dahlem Konferenzen, Berlin, pp. 73–88.Google Scholar
  12. Filipek L. H. and Owen R. M. (1981) Diagenetic controls of phosphorus in outer continental-shelf sediments from the. Gulf of Mexico. Chem. Geol. 33, 181–204.CrossRefGoogle Scholar
  13. Froelich P. N. (1979) Marine Phosphorus Geochemistry. Ph.D. Dissertation, University of Rhode Island, 291 p.Google Scholar
  14. Froelich P. N., Arthur M. A., Burnett W. C., Deakin M., Hendsley V., Jahnke R., Kaul L., Kim K.-H., Soutar A. and Vathakanon C. (1988) Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation. Mar. Geol. 80, 309–343.CrossRefGoogle Scholar
  15. Froelich P. N., Bender M. L. and Heath G. R. (1977) Phosphorus accumulation rates in metalliferous sediments on the East Pacific Rise. Earth Planet. Sci. Lett. 34, 351–359.CrossRefGoogle Scholar
  16. Froelich P. N., Bender M. L., Luedtke N. A., Heath G. R. and DeVries T. (1982) The marine phosphorus cycle. Am. J. Sci. 282, 474–511.CrossRefGoogle Scholar
  17. Goldhaber M. B., Aller R. C., Cochran J. K., Rosenfeld J. K., Martens C. S. and Berner R. A. (1977) Sulfate reduction, diffusion,and bioturbation in Long Island Sound sediments; report of the FOAM group. Am. J. Sci. 277, 193–237.CrossRefGoogle Scholar
  18. Hartmann M. P., Muller P. J., Suess E. and Van der Weijden C. H. (1976) Chemistry of Late Quaternary sediments and their interstitial waters from the NW African continental margin. “Meteor” Forsch Ergeb Reihe C 24, 1–67.Google Scholar
  19. Holland, H. D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley-Interscience, New York, 351 p.Google Scholar
  20. Ingall E. D. and Van Cappellen P. (1990) Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 54, 373–386.CrossRefGoogle Scholar
  21. Ingall E. D., Schroeder P. A. and Berner R. A. (1990) The nature of organic phosphorus in marine sediments: New insights from 31P-NMR. Geochim. Cosmochim. Acta 54, 2617–2620.CrossRefGoogle Scholar
  22. Jorgensen B. B. (1983) Processes at the sediment-water interface. In Bolin B. and Cook R. B. (eds) The Major Biogeochemical Cycles and Their Interactions. SCOPE 21, Wiley, New York, pp. 477–515.Google Scholar
  23. Kittredge J. S., Horiguchi M. and Williams P. M. (1969) Aminophosphonic acids: Biosynthesis by marine plankton. Comp. Biochem. Physiol. 29, 859–863.CrossRefGoogle Scholar
  24. Krom M. D. and Berner R. A. (1981) The diageneis of phosphorus in near shore marine sediments. Geochim. Cosmochim. Acta 45, 207–216.CrossRefGoogle Scholar
  25. Lucotte M. and d’Anglejan B. (1983) Forms of phosphorus and phosphorus-iron relationships in the suspended matter of the St. Lawrence Estuary. Can. J. Earth Sci. 20, 1880–1890.CrossRefGoogle Scholar
  26. Mach D. M., Ramirez A. and Holland HD (1987) Organic phosphorus and carbon in marine sediments. Am. J. Sci. 287, 429–441.CrossRefGoogle Scholar
  27. Meybeck M. (1982) Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450.CrossRefGoogle Scholar
  28. Morse J. W. and Cook N. (1978) The distribution and form of phosphorus in North Atlantic Ocean deep-sea and continental slope sediments. Limnol. Oceanog. 23, 825–830.CrossRefGoogle Scholar
  29. Nissenbaum A. (1979) Phosphorus in marine and non-marine humic substances. Geochim. Cosmochim. Acta 43, 1973–1978.CrossRefGoogle Scholar
  30. Redfield A. C., Ketchum B. H. and Richards F. A. (1963) The influence of organisms on the composition of sea water. In Hill M. N. (ed) The Sea, Vol. II, Wiley, New York, pp. 26–87.Google Scholar
  31. Reimers C. E., Kastner M. and Garrison R. E. (1990) The role of bacterial mats in phosphate mineralization with particular reference to the Monterey formation. In Burnett W. C. and Riggs S. R. (eds) Genesis of Neogene to Modern Phosphorites. Cambridge University, Cambridge, pp. 300–311.Google Scholar
  32. Ruttenberg K. C. (1990) Diagenesis and burial of phosphorus in marine sediments: Implications for the marine phosphorus budget. Ph.D. Dissertation, Yale University.Google Scholar
  33. Ruttenberg K. C. (1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanog. (in press)Google Scholar
  34. Ruttenberg K. C. and Berner R. A. (1992) Authigenic apatite formation and burial in non-upwelling coastal sediments. Geochim. Cosmochim. Acta (in press)Google Scholar
  35. Sheldon R. P. (1981) Ancient marine phosphorites. An. Rev. Earth Planet. Sci. 9, 251–284.CrossRefGoogle Scholar
  36. Sherwood, B. A., Sager S. L. and Holland H. D. (1987) Phosphorus in foraminiferal sediments from North Atlantic Ridge cores and in pure limestones. Geochim. Cosmochim. Acta 51, 1861–1866.CrossRefGoogle Scholar
  37. Sholkovitz E. R. (1973) Interstitial water chemistry of the Santa Barbara Basin sediments. Geochim. Cosmochim. Acta 37, 2043–2073.CrossRefGoogle Scholar
  38. Stumm W. and Morgan J. J. (1981) Aquatic Chemistry. 2nd edn. Wiley, New York, 780 p.Google Scholar
  39. Suess E. (1981) Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris. Geochim. Cosmochim. Acta 45, 577–588.CrossRefGoogle Scholar
  40. Suess E. and Muller P. J. (1980) Productivity, sedimentation rate and sedimentary organic matter in the oceans-II. Elemental fractionation. Colloques Internationaux CNRS 293, 17–26.Google Scholar
  41. Vadstein O., Jensen A., Olsen Y. and Reinertsen H (1988) Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanog. 33, 489–503.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Robert A. Berner
    • 1
  • Kathleen C. Ruttenberg
    • 1
  • Ellery D. Ingall
    • 1
  • Ji-Long Rao
    • 1
  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations