Multi-Phase Processes in the Atmospheric Sulfur Cycle

  • Jos Lelieveld
Part of the NATO ASI Series book series (volume 4)


Sulfur enters the atmosphere from natural as well as anthropogenic sources (Table 1). An overview of the atmospheric sulfur cycle is given in Figure 1. Natural sources generally emit reduced sulfur compounds, for example H2S (hydrogen sulfide), CS2 (carbon disulfide), OCS (carbonyl sulfide) and CH3SCH3 (dimethyl sulfide, DMS). H2S, a product of sulfate reduction by bacteria in anaerobic environments such as swamps and marshes, has a average tropospheric volume mixing ratio of 20–50 pptv (Delmas et al., 1980; Herrmann and Jaeschke, 1984). DMS is also a volatile product from biological activity, predominantly of marine phytoplankton. The mixing ratio of DMS is of order 500–150 pptv (Maroulis and Bandy, 1977; Andreae and Raemdonck,1983). CS2 is probably largely of anthropogenic origin (Turco et al., 1979), although comparatively little is known about this gas. The CS2 mixing ratio in background air is approximately 150–40 pptv (Maroulis and Bandy, 1980; Jones et al., 1983). The “background” troposphere, the main focus of this paper, is defined as the part of the troposphere that is not directly affected by anthropogenic emissions of trace compounds, a predominantly marine environment.


Liquid Water Content Dimethyl Sulfide Cloud Condensation Nucleus Cloud Type Stratiform Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht B. A. (1981) Parameterization of trade-cumulus cloud amounts. J. Atmos. Sci. 38, 97–105.CrossRefGoogle Scholar
  2. Andreae M. O. (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 30, 1–29.CrossRefGoogle Scholar
  3. Andreae M. O. and Raemdonck H. (1983) Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221, 744–747.CrossRefGoogle Scholar
  4. Andreae M. O., Berresheim H., Andreae T. W., Kritz M. A., Bates T. S. and Merrill J. T. (1983) Vertical distribution of dimethyslsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean. J. Atmos. Chem. 6, 149–173.CrossRefGoogle Scholar
  5. Andreae M. O. and Andreae T. W. (1988) The cycle of biogenic sulfur compounds over the Amazon Basin 1. Dry season. J. Geophys. Res. 93, 1487–1497.CrossRefGoogle Scholar
  6. Atkinson B. W. (1981) Mesoscale atmospheric circulations. Academic Press, London.Google Scholar
  7. Austin P. M. and Houze R. A. (1973) A technique for computing vertical transports by precipitating cumuli. J. Atmos. Sci. 30, 1100–1111.CrossRefGoogle Scholar
  8. Ayers G. P., Ivey J. P. and Goodman HS (1986) Sulfate and methanesulfonate in the maritime aerosol at Cape Grim, Tasmania. J. Atmos. Chem. 4, 173–185.CrossRefGoogle Scholar
  9. Baker M. B. and Charlson R. J. (1990) CCN bistability of the cloudtopped boundary layer. Nature 345, 142–145.CrossRefGoogle Scholar
  10. Barnes I., Bastian V. and Becker K. H. (1987) Products and kinetics of the OH initiated oxidation of SO2, CH3SH, DMS, DMDS and DMSO. In: Physico-Chemical Behaviour of Atmospheric Pollutants (eds. G. Angeletti and G. Restelli ). D. Reidel Publ. Co., Dordrecht, pp. 327–337.Google Scholar
  11. Bates T. S., Cline J. D, Gammon R. H., Kelly-Hansen S. R. (1987) Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. J. Geophys. Res. 92, 2930–2938.CrossRefGoogle Scholar
  12. Becker P. (1986) A simple method for parameterizing cumulus cloud amount. Contrib. Atmos. Phys. 59, 399–408.Google Scholar
  13. Berresheim H. and Jaeschke W. (1983) The contribution of volcanoes to the global atmospheric sulfur budget. J. Geophys. Res. 88, 3732–3740.CrossRefGoogle Scholar
  14. Berresheim H. (1987) Biogenic sulfur emissions from the subantarctic and antarctic oceans. J. Geophys. Res. 92, 13245–13262.CrossRefGoogle Scholar
  15. Berresheim H., Andreae M. O., Ayers G. P. and Gillett R. W. (1989) Distribution of biogenic sulfur compounds in the remote southern hemisphere. In: Biogenic Sulfur in the Environment (eds. E. S. Saltzman and W. J. Cooper). ACS Symposium series 393, American Chemical Society, Washington DC, pp. 352–366.CrossRefGoogle Scholar
  16. Berresheim H., Andreae M. O., Ayers G. P., Gillett R. W., Merrill J. T., Davis V. J. and Chameides W. L. (1990) Airborne measurements of dimethylsulfide, sulfur dioxide and aerosol ions over the Southern Ocean south of Australia. J. Atmos. Chem. 10, 341–370.CrossRefGoogle Scholar
  17. Bingemer H. G., Bürgermeister S., Zimmermann R. L. and Georgii H. W. (1990) Atmospheric OCS: Evidence for a contribution of anthropogenic sources? J. Geophys. Res. 95, 20617–20622.CrossRefGoogle Scholar
  18. Boyce S. D. and Hoffmann M. R. (1984) Kinetics and mechanism of the formation of hydroxymethane sulfonic acid at low pH. J. Phys. Chem. 88, 4740–4746.CrossRefGoogle Scholar
  19. Braham R. R. (1974) Cloud physics of urban weather modification: a preliminary report. Bull. Amer. Meteorol. Soc. 55, 100–106.CrossRefGoogle Scholar
  20. Brost R. A. and Heimann M. (1992) Parameterization of cloud transport of trace species in global 3-D models. In: Air Pollution Modeling and Its Applications (ed. H. Van Dop). VIII. Plenum Press, New York. (in press)Google Scholar
  21. Brown, K. A. and Bell J. N. B. (1986) Vegetation-the missing link in the global cycle of carbonyl sulfide (COS). Atmos. Environ. 20, 537–540.CrossRefGoogle Scholar
  22. Calvert J. G., Slater D. H. and Gall J. W. (1971) The methyl radical-sulfur dioxide reaction. In: Chemical Reactions in Urban Atmospheres (ed. C. S. Tuesday ). Elsevier, New York, pp. 153–158.Google Scholar
  23. Calvert J. G., Lazrus A., Kok G. L., Heikes B. G., Walega J. G., Lind J. and Cantrell C. A. (1985) Chemical mechanisms of acid generation in the troposphere. Nature 317, 27–35.CrossRefGoogle Scholar
  24. Carmichael G. R. and Peters L. K. (1984) An eulerian transport/transformation/removal model for SO2 and sulfate–I. Model development. Atmos. Environ. 18, 937–951.CrossRefGoogle Scholar
  25. Chameides W. L. (1984) The photochemistry of a remote marine stratiform cloud. J. Geophys. Res. 89, 4739–4755.CrossRefGoogle Scholar
  26. Charlson R. J. and Rodhe H. (1982) Factors controlling the acidity of natural rainwater. Nature 295, 683–685.CrossRefGoogle Scholar
  27. Charlson R. J., Lovelock J. E., Andreae M. O. and Warren S. G. (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661.CrossRefGoogle Scholar
  28. Charlson R. J., Langner J. and Rodhe H. (1990) Sulphate aerosol and climate. Nature 348, 22.CrossRefGoogle Scholar
  29. Charlson R. J., Langner J., Rodhe H., Leovy C. B. and Warren S. G. (1991) Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43AB, 152–163.Google Scholar
  30. Chatfield R. B. and Crutzen P. J. (1984) Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors. J. Geophys. Res. 89, 7111–7132.CrossRefGoogle Scholar
  31. Churchill D. D. and Houze R. A. (1984) Mesoscale updraft magnitude and cloud-ice content deduced from the ice budget of the stratiform region of a tropical cloud cluster. J. Atmos. Sci. 41, 1717–1725.CrossRefGoogle Scholar
  32. Cotton W. R. and Anthes R. A. S. (1989) Storm and Cloud Dynamics, Academic Press, San Diego, 883 p.Google Scholar
  33. Covert D. S. (1988) North Pacific marine background aerosol: average ammonium to sulfate molar ratio equals one. J. Geophys. Res. 93, 8455–8458.CrossRefGoogle Scholar
  34. Crutzen P. J. (1976) The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73–77.CrossRefGoogle Scholar
  35. Crutzen P. J. and Andreae M. O. (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669–1678.CrossRefGoogle Scholar
  36. Davies T. D. (1983) Sulfur dioxide precipitation scavenging. Atmos. Environ. 17, 797–805.CrossRefGoogle Scholar
  37. Delmas R., Baudet J., Servant J. and Baziard I (1980) Emissions and concentrations of hydrogen sulfide in air of the tropical forest of the Ivory Coast and of temperature regions in France. J. Geophys. Res. 85, 4468–4474.CrossRefGoogle Scholar
  38. DeMore W. B., Molina M. J., Spander S. P., Golden D. M., Hampson R. F., Kurylo M. J., Howard C. J. and Ravishankara A. R. (1987) Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, evaluation No. 8. JPL Publication 87–41, NASA Jet Propulsion Lab., Pasadena, 217 p.Google Scholar
  39. Dickerson R. R., Hufman G. J., Luke W. T., Nunnermacher L. J., Pickering K. E., Leslie A. C. D., Lindsey C. G., Slinn W. G. N., Kelly T. J., Daum P. H., Delaney A. C., Greenberg J. P., Zimmerman P. R., Boatman J. F., Ray J. D. and Stedman D. H. (1987) Thunderstorms: an important mechanism in the transport of air pollutants. Science 235, 460–465.CrossRefGoogle Scholar
  40. Droegemeier K. K. and Wilhelmson R. B. (1987) Numerical simulation of thunderstorm outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci. 44, 1180–1210.CrossRefGoogle Scholar
  41. Farhataziz and Ross A. B. (1977) Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution, III. Hydroxyl Radical and Perhydroxyl Radical and Their Aqueous Ions. Report NSDRS-NBS 59. U.S. Dept. of Commerce, Washington D.C., 117 p.Google Scholar
  42. Flyger H., Heidam N. Z., Hansen K., Megaw W. J., Warther E. G. and Hogan A. W. (1976) The backgroud level of the summer tropospheric aerosol, sulfur dioxide and ozone over Greenland and the North Atlantic Ocean. J. Aerosol. Sci. 7, 103–140.CrossRefGoogle Scholar
  43. Georgii H. W. and Meixner F. X. (1980) Measurement of tropospheric and stratospheric SO2 distribution. J. Geophys. Res. 85, 7433–7438.CrossRefGoogle Scholar
  44. Goldan P. D., Kuster W. C., Albritton D. L. and Fehsenfeld FC (1987) The measurement of natural sulfur emissions from soils and vegetation: three sites in the Eastern United States revisited. J. Atmos. Chem. 5, 439–467.CrossRefGoogle Scholar
  45. Graedel T. E., Mandich M. L. and Weschler C. J. (1986) Kinetic model studies of atmospheric droplet chemistry. 2. Homogeneous transition metal chemistry in raindrops. J. Geophys. Res. 91, 5205–5221.CrossRefGoogle Scholar
  46. Gras J. L. (1990) Cloud condensation nuclei over the Southern Ocean. Geophys. Res. Lett. 17, 1565–1567.CrossRefGoogle Scholar
  47. Griffith D. W. T. and Schuster G (1987) Atmospheric trace gas analysis using matrix isolation-Fourier transform infrared spectroscopy. J. Atmos. Chem. 5, 59–81.CrossRefGoogle Scholar
  48. Hatakeyama S. and Akimoto H. (1983) Reactions of OH radicals with methanethiol, dimethyl sulfide, and dimethyl disulfide in air. J. Phys. Chem. 87, 2387–2395.CrossRefGoogle Scholar
  49. Hegg D. A. (1985) The importance of liquid-phase oxidation of SO2 in the troposphere. J. Geophys. Res. 90, 3773–3779.CrossRefGoogle Scholar
  50. Heintzenberg J. (1989) Fine particles in the global troposphere. A review, Tellus 41B, 149–160.CrossRefGoogle Scholar
  51. Henderson-Sellers A. and McGuffie K. (1992) Basis for integration of conventional observations of cloud into global nephanalyses. J. Atmos. Chem. 11. (in press)Google Scholar
  52. Herrmann J. and Jaeschke W. (1984) Measurements of H2S and SO2 over the Atlantic Ocean. J. Atmos. Chem. 1, 111–123.CrossRefGoogle Scholar
  53. Hicks B. B. and Wesely M. L. (1980) Turbulent transfer processes to a surface and interaction with vegetation. In: Atmospheric Sulfur Deposition (ed. B. B. Hicks ). Ann Arbor Press, Ann Arbor, pp. 199–207.Google Scholar
  54. Hobbs P. V., Radke L. F. and Shumway S. E. (1970) Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington state. J. Atmos. Sci. 27, 81–89.CrossRefGoogle Scholar
  55. Hoffmann M. R. and Edwards J. O. (1975) Kinetics of the oxidation of sulfite by hydrogen peroxide in acid solution. J. Phys. Chem. 79, 2096–2098.CrossRefGoogle Scholar
  56. Hoigné J. and Bader H. (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water, 1. Non-dissociating organic compounds. Water. Res. 17, 173–183.CrossRefGoogle Scholar
  57. Hoigné J., Bader H., Haag W. R. and Staehelin J. (1985) Rate constants of reactions of ozone with organic and inorganic compounds in water, 3. Inorganic compounds and radicals. Water. Res. 8, 993–1004.CrossRefGoogle Scholar
  58. Hoppel W. A. (1987) Nucleation in the MSA-water system. Atmos. Environ. 21, 2703–2709.CrossRefGoogle Scholar
  59. Houghton H. G. (1985) Physical Meteorology. MIT Press, Cambridge, MA, 442 p.Google Scholar
  60. Hughes N. A. (1984) Global cloud climatologies: A historical review. J. Climate Appl. Meteor. 23, 724–751.CrossRefGoogle Scholar
  61. Isaksen I. and Rodhe H. (1978) A Two-Dimensional Model for the Global Distribution of Gases and Aerosol Particles in the Troposphere. Report AC-47, UDC 551.510.4, International Meteorology Institute, University of Stockholm, 78 p.Google Scholar
  62. Iversen T. (1989) Numerical modelling of the long range transport of sulfur dioxide and particulate sulfate to the Arctic. Atmos. Environ. 23, 2571–2595.CrossRefGoogle Scholar
  63. Jacob D. J. (1986) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. J. Geophys. Res. 91, 9807–9826.CrossRefGoogle Scholar
  64. Jaenicke R. (1984) Physical aspects of the atmospheric aerosol. In: Aerosols and Their Climatic Effects (eds. H. E. Gerber and A. Deepak ). A. Deepak Publishing, Hampton, pp. 7–34.Google Scholar
  65. Jones B. M. R., Cox R. A. and Penkett S. A. (1983), Atmospheric chemistry of carbon disulfide. J. Atmos. Chem. 1, 65–86.CrossRefGoogle Scholar
  66. Knollenberg R. G. (1981) Techniques for probing cloud microstructure. In: Clouds–Their Formation, Optical Properties, and Effects (eds. P. V. Hobbs and A. Deepak ). Academic Press, New York, pp. 15–91.Google Scholar
  67. Kunen S. M., Lazrus A. L., Kok G. L. and Heikes B. G. (1983) Aqueous oxidation of SO2 by hydrogen peroxide. J. Phys. Res. 88, 3671–3674.Google Scholar
  68. Langner J. and Rodhe H. (1991) A global three-dimensional model of the tropospheric sulfur cycle. J. Atmos. Chem. (in press).Google Scholar
  69. Lelieveld J., Crutzen P. J. and Rodhe H. (1989) Zonal Average Cloud Characteristics for Global Atmospheric Chemistry Modelling. GLOMAC-report UDC 551.510.4, CM-74. International Meteorological Institute in Stockholm, 54 p.Google Scholar
  70. Lelieveld J. (1990) The role of clouds in tropospheric photochemistry. Ph.D. Thesis, University of Utrecht, 131 p.Google Scholar
  71. Lelieveld J. and Crutzen P. J. (1990) Influences of cloud photochemical processes on tropospheric ozone. Nature 343, 227–233.CrossRefGoogle Scholar
  72. Levy H., Galloway J. N., Eliassen A., Fisher B. E. A., Gorzelsha K., Hastie D. R., Moody J. L., Ryaboshapko A. G., Savoie D. and Whelpdale D. M. (1990) The long-range transport of sulfur and nitrogen compounds. In: The Long-range Atmospheric Transport of Natural and Contaminant Substances (ed. A. H. Knap ). Kluwer Academic Publishers, Dordrecht, pp. 231–257.Google Scholar
  73. Luria M., Van Valin C. C., Gunter R. L., Wellman D. L., Keene W. C., Galloway J. C., Sievering H. and Boatman J. F. (1990) Sulfur dioxide over the western North Atlantic Ocean during GCE/CASE/WATOX. Global Biogeochem Cycles 4, 381–393.CrossRefGoogle Scholar
  74. Maahs H. G. (1983) Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in non-urban tropospheric clouds. J. Geophys. Res. 88, 10721–10732.CrossRefGoogle Scholar
  75. Malberg H. (1973) Comparison of mean cloud cover obtained by satellite photographs and ground-based observations over Europe and the Atlantic. Mon. Wea. Rev. 101: 893–897.CrossRefGoogle Scholar
  76. Maroulis PJ, Bandy AR (1977) Estimate of the contribution of the biologically produced dimethyl sulfide to the global sulfur cycle. Science 196, 647–648.CrossRefGoogle Scholar
  77. Maroulis P. J. and Bandy A. R. (1980) Measurements of atmospheric concentrations of CS2 in the eastern United States. Geophys. Res. Lett. 7, 681–684.CrossRefGoogle Scholar
  78. Maroulis P. J., Torres A. L., Goldberg A. B. and Bandy A. R. (1980) Atmospheric SO2 measurements on project Gametag. J. Geophys. Res. 85, 7345–7349.CrossRefGoogle Scholar
  79. Martin A. (1984) Estimated washout coefficients for sulfur dioxide, nitric oxide, nitrogen dioxide and ozone. Atmos. Environ. 18, 1955–1961.CrossRefGoogle Scholar
  80. Martin L. R. and Damschen D. E. (1981) Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH. Atmos. Environ. 15, 1615–1621.CrossRefGoogle Scholar
  81. Mason B. J. (1971) The Physics of Clouds. Clarendon Press, Oxford, 481 p.Google Scholar
  82. Matveev L. T. (1984) Cloud Dynamics. D. Reidel Publ. Co., Dordrecht, Netherlands, 340 p.Google Scholar
  83. Milne P. J., Zika R. G. and Saltzman E. S. (1989) Rate of reaction of methanesulfonic acid, dimethyl sulfoxide, and dimethyl sulfone with hydroxyl radical in aqueous solution. In: Biogenic Sulfur in The Environment (eds. E. Saltzman and W. J. Cooper). ACS series 393, American Chemical Society, Washington DC, pp. 518–528.CrossRefGoogle Scholar
  84. Mitchell J. F. B., Senior C. A. and Ingram W. J. (1989) CO2 and climate: a missing feedback? Nature 341, 132–134.CrossRefGoogle Scholar
  85. Möller D. (1984) Estimation of the global man-made sulfur emission. Atmos. Environ. 18, 19–27.CrossRefGoogle Scholar
  86. Munger J. W., Tiller C. and Hoffmann M. R. (1986) Identification of hydroxymethanesulfonate in cloudwater. Science 231, 247–249.CrossRefGoogle Scholar
  87. Nguyen BC, Bonsang B, Gaudry A (1983) The role of the ocean in the global atmospheric sulfur cycle. J. Geophys. Res. 88, 10903–10914.CrossRefGoogle Scholar
  88. Nicholls S. (1984) The dynamics of stratocumulus: aircraft observations and comparisons with a mixed layer model. Quart. J. R. Met. Soc., 110, 783–820.CrossRefGoogle Scholar
  89. Niki H., Maker P. D., Savage C. M. and Breitenbach L. P. (1983) An FTIR study of the mechanism for the reaction HO+CH3SCH3, Int. J. Chem. Kin. 15, 647–654.CrossRefGoogle Scholar
  90. Nitta T. (1975) Observational determination of cloud mass flux distribution. J. Atmos. Sci. 32, 73–91.CrossRefGoogle Scholar
  91. Njoku E. G. and Swanson L. (1983) Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry. Mon. Weather Rev. 111, 1977–1987.CrossRefGoogle Scholar
  92. Ockelmann G. E. F. and Georgii H. W. (1988) Large scale distribution of sulfur dioxide in the troposphere. In: Field Measurements and Their Interpretation (eds. S. Beilke, J. Morelli and G. Angeletti). CEC Air Poll. Res. Rept. 14, CEC Brussels, pp 260–268.Google Scholar
  93. Olofsson M. (1988) Global Vertical Mass Transport by Clouds - A Two-Dimensional Model Study. Report CM-74, UDC 551.510.4. International Meteorological Institute, Stockholm, 35 p.Google Scholar
  94. Paltridge G. W. and Platt C. M. R. (1976) Radiative Processes in Meteorology and Climatology. Elsevier, Amsterdam, 318 p.Google Scholar
  95. Panter R. and Penzhorn R. D. (1980) Alkyl sulfonic acids in the atmosphere. Atmos. Environ. 14, 149–151.CrossRefGoogle Scholar
  96. Penkett S. A., Jones B. M. R., Brice K. A. and Eggleton A. E. J. (1979) The importance of atmospheric O3 and H2O2 in oxidizing SO2 in cloud and rainwater. Atmos. Environ. 13, 123–137.CrossRefGoogle Scholar
  97. Prabhakara C., Wang I., Chang A. T. C. and Gloersen P. (1983) A statistical examination of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surface wind speed. J. Appl. Meteorol. 22, 2023–2037.CrossRefGoogle Scholar
  98. Prinn R. G., Cunnold D., Simmonds P. G., Alyea F. N., Boldi R., Crawford A. J., Fraser P., Gutzler D., Hartley D., Rosen R. and Rasmussen R. A. (1982) Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990. J. Geophys. Res. (in press)Google Scholar
  99. Prospero J. M., Glaccum R. A. and Nees R. T. (1981) Atmospheric transport of soil dust from Africa and South America. Nature 289, 570–572.CrossRefGoogle Scholar
  100. Pruppacher H. R. and Klett J. D. (1980) Microphysics of Clouds and Precipitation. D. Reidel Publ. Co., Dordrecht, 714 p.Google Scholar
  101. Quinn P. K., Bates T. S., Johnson J. E., Covert D. S. and Chanson R. J. (1990) Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. J. Geophys. Res. 95, 16405–16416.CrossRefGoogle Scholar
  102. Rodhe H. (1978) Budgets and turn-over times of atmospheric sulfur compounds. Atmos. Environ. 12, 671–680.CrossRefGoogle Scholar
  103. Rodhe H. and Grandell J. (1972) On the removal time of aerosol particles from the atmosphere by precipitation scavenging. Tellus 24, 442–454.CrossRefGoogle Scholar
  104. Rodhe H. and Grandell J. (1981) Estimates of characteristic times for precipitation scavenging. J. Atmos. Sci. 38, 370–386.CrossRefGoogle Scholar
  105. Rodhe H., Crutzen P. J. and Vanderpol A. (1981) Formation of sulfuric and nitric acid in the atmosphere during long-range transport. Tellus 33, 132–141.CrossRefGoogle Scholar
  106. Ryaboshapko A. G. (1983) The atmospheric sulfur cycle. In: The Global Biogeochemical Sulfur Cycle (eds. M. V. Ivanov and J. R. Freney ). SCOPE 19, 203–296.Google Scholar
  107. Saltzman E. S., Savoie D. L., Zika R. G. and Prospero J. M. (1983) Methane sulfonic acid in the marine atmosphere. J. Geophys. Res. 88, 10897–10902.CrossRefGoogle Scholar
  108. Sandalls F. J. and Penkett S. A. (1977) Measurements of carbonyl sulfide and carbon disulfide in the atmosphere. Atmos. Environ. 11, 197–199.CrossRefGoogle Scholar
  109. Schlesinger R. E. (1984) Mature thunderstorm cloud-top structure and dynamics: a three-dimensional numerical simulation study. J. Atmos. Sci. 41, 1551–1570.CrossRefGoogle Scholar
  110. Schwartz S. E. (1988) Are global cloud albedo and climate controlled by marine phytoplankton? Nature 336, 441–445.CrossRefGoogle Scholar
  111. Sehmel GA (1980) Particle and gas dry deposition: A review. Atmos. Environ. 14: 983–1011.CrossRefGoogle Scholar
  112. Sievering H., Van Valing C. C., Barrett E. W. and Pueschel R. F. (1984) Cloud scavenging of aerosol sulfur. Atmos. Environ. 18, 2685–2693.CrossRefGoogle Scholar
  113. Singh H. B., Salas L. J. and Stiles R. E. (1983) Selected man-made halogenated chemicals in the air and oceanic environment. J. Geophys. Res. 88, 3675–3683.CrossRefGoogle Scholar
  114. Smith R. M. and Martell A. E. (1976) Critical Stability Constants, Vol. 4, Inorganic Complexes. Plenum, New York, 257 p.Google Scholar
  115. Soong S. T. and Ogura Y. (1980) Response of tradewind cumuli to large-scale processes. J. Atmos. Sci. 37, 2035–2050.CrossRefGoogle Scholar
  116. Stockwell W. R. and Calvert J. G. (1983) The mechanism of the HO-SO2 reaction. Atmos. Environ. 17, 2231–2235.CrossRefGoogle Scholar
  117. Stull R. B. (1985) A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Clim. Appl. Meteorol. 24, 49–56.CrossRefGoogle Scholar
  118. Telegadas K. and London J. (1954) A Physical Model of the Northern Hemisphere Troposphere for Winter and Summer. Air Force Science Report 19(122)-165, New York University, 55 p.Google Scholar
  119. Tian L. and Curry J. A. (1989) Cloud overlap statistics. J. Geophys. Res. 94, 9925–9935.CrossRefGoogle Scholar
  120. Toon O. B., Kasting J. F., Turco R. P. and Liu M. S. (1987) The sulfur cycle in the marine atmosphere. J. Geophys. Res. 92, 943–963.CrossRefGoogle Scholar
  121. Torres A. L., Maroulis P. J., Goldberg A. B. and Bandy A. R. (1980) Atmospheric OCS measurements on project Gametag. J. Geophys. Res. 85, 7357–7360.CrossRefGoogle Scholar
  122. Turco R. P., Hamill P., Toon O. B., Whitten R. C. and Kiang C. S. (1979) A one-dimensional model describing aerosol formation and evolution in the stratosphere: I. Physical processes and mathematical analogs. J. Atmos. Sci. 36, 699–717.CrossRefGoogle Scholar
  123. Turco R. P., Whitten R. C., Toon O. B., Pollack J. B. and Hamill P. (1980) OCS, stratospheric aerosols and climate. Nature 283, 283–286.CrossRefGoogle Scholar
  124. Twomey SA (1977) Atmospheric Aerosols. Elsevier, Amsterdam, 302 p.Google Scholar
  125. Twomey S. A., Davidson K. A. and Seton K. J. (1978) Result of 5 years’ observations of cloud nucleus concentrations at Robertson, New South Wales. J. Atmos. Sci. 35, 650–656.CrossRefGoogle Scholar
  126. Twomey S. A., Piepgrass M. and Wolfe T. L. (1984) An assessment of the impact of pollution on the global cloud albedo. Tellus 36B, 356–366.Google Scholar
  127. Voldner E. C., Barrie L. A. and Sirois A. (1986) A literature review of dry deposition of oxides of sulfur and nitrogen with emphasis on long-range transport modelling in North America. Atmos. Environ. 20, 2101–2123.CrossRefGoogle Scholar
  128. Wallace J. M. and Hobbs P. V. (1977) Atmospheric Science. Academic Press, New York, 467 p.Google Scholar
  129. Warner J. (1969) The microstructure of cumulus clouds. Part 1: General feature of the droplet spectrum. J. Atmos. Sci. 26, 1049–1059.CrossRefGoogle Scholar
  130. Warren S. G., Hahn C. and London J. (1985) Simultaneous occurrence of different cloud types. J. Climate Appl. Meteor. 24, 658–667.CrossRefGoogle Scholar
  131. Warren S. G., Hahn C. J., London J., Chervin R. M. and Jenne R. (1986) Global Distribution of Total Cloud Cover and Cloud Type Amounts over Land. NCAR Technical Note TN-273+STR, Boulder, CO, 228 p. (also on tape)Google Scholar
  132. Warren S. G., Hahn C. J., London J., Chervin R. M. and Jenne R. (1988) Global Distribution of Total Cloud Cover and Cloud Type Amounts over the Ocean. NCAR Technical Note TN-317+STR, Boulder, CO, 212 p. (also on tape)Google Scholar
  133. Wetherald R. T. and Manabe S. (1988) Cloud feedback processes in a general circulation model. J. Atmos. Sci. 45, 1397–1415.CrossRefGoogle Scholar
  134. Whitby K. T. (1978) The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–159.CrossRefGoogle Scholar
  135. Wigley T. M. L. (1989) Possible climate change due to SO2 derived cloud condensation nuclei. Nature 339, 365–367.CrossRefGoogle Scholar
  136. Wigley T. M. L. (1991) Could reducing fossil-fuel emissions cause global warming? Nature 349, 503–506.CrossRefGoogle Scholar
  137. Yanai M., Chu J. H., Stark T. E. and Nitta T. (1976) Response of deep and shallow tropical maritime cumuli to large-scale processes. J. Atmos. Sci. 33, 976–991.CrossRefGoogle Scholar
  138. Yin F., Grosjean D. and Seinfeld J. H. (1986) Analysis of atmosphe atmospheric photooxidation mechanisms for organosulfur compounds. J. Geophys. Res. 9, 14417–14438.CrossRefGoogle Scholar
  139. Zipser E. J. and LeMone M. A. (1980) Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci. 37, 2458–2469CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Jos Lelieveld
    • 1
  1. 1.Atmospheric Chemistry DivisionMax-Planck-Intitute for ChemistryMainzGermany

Personalised recommendations