Skip to main content

C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change

  • Conference paper
Interactions of C, N, P and S Biogeochemical Cycles and Global Change

Part of the book series: NATO ASI Series ((ASII,volume 4))

Abstract

During the last two decades, the global biogeochemical cycles of elements have been investigated in considerable detail (see Bibliography). Much effort has been invested in the carbon cycle, nutrient cycles of nitrogen and phosphorus, and in the sulfur cycle. Interest in these cycles and others, like those of trace metals, has been heightened by problems associated with global, regional and local environmental problems. These problems (Table 1) result in part from increased fluxes of C, N, P and S compounds into the natural biogeochemical cycles of these elements because of the activities of humankind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Andreae M. O. (1986) The ocean as a source of atmospheric sulfur compounds. In: The Role of Air-Sea Exchange in Geochemical Cycling (ed. P. Buat-Menard ). D. Reidel, Dordrecht, pp. 331–362.

    Google Scholar 

  • Andreae M. O. (1990) Ocean-atmosphere in the global biogeochemical sulfur cycle. Mar. Chem. 30, 1–29.

    Google Scholar 

  • Andreae M. O. and Barnard W. R. (1984) The marine chemistry of dimethylsulfide. Mar. Chem. 14, 267–279.

    Google Scholar 

  • Andreae M. O. and Raemdonck H. (1983) Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view. Science 221, 744–747.

    Google Scholar 

  • Arrhenius S. (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. 41, 237.

    Google Scholar 

  • Arthur M. A., Dean W. E. and Schianger S. O. (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism and changes in atmospheric CO2: Natural variations archean to present. In: The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 504–529.

    Google Scholar 

  • Atkinson M. J. and Smith S. V. (1983) C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28, 568–575.

    Google Scholar 

  • Barnola J. M., Raynaud C., Korotkevich Y. S. and Lorius C. (1987) Vostok ice core provides 160,000 year record of atmospheric CO2. Nature 329, 408–414.

    Google Scholar 

  • Behrendt H. (1988) Changes in nonpoint nutrient loading into European freshwaters: Trends and consequences since 1950 and not-impossible changes until 2080. Working Paper, Internati. Inst. Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Berger W. H. and Vincent E. (1986) Deep-sea carbonates: Reading the carbon-isotope signal. Geologische Rundschau 75, 249–269.

    Google Scholar 

  • Berner R. A. (1972) Sulfate reduction, pyrite formation and the oceanic sulfur budget. In: The Changing Chemistry of the Oceans (eds. D. Dryssen and D. Jagner). Nobel Symposium 20, Wiley Interscience, N. Y., pp. 347–361.

    Google Scholar 

  • Berner E. K. and Berner R. A. (1987) The Global Water Cycle: Geochemistry and Environment. Prentice Hall, Englewood Cliffs, N. J. 397 p.

    Google Scholar 

  • Berner R. A., Lasaga A. C. and Garrels R. M. (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683.

    Google Scholar 

  • Berrensheim H. and Jaeschke W. (1983) The contribution of volcanoes to the global atmospheric sulfur budget. J. Geophys. Res. 88, 3732–3740.

    Google Scholar 

  • Bischoff W. D., Paterson V. L. and Mackenzie F. T. (1984) Geochemical mass balance for sulfur-and nitrogen-bearing acid components: Eastern United States. In: Geological Aspects of Acid Deposition (ed. O. P. Bricker ). Butterworth Publ, Boston, pp. 1–21.

    Google Scholar 

  • Blake D. R. and Rowland F. S. (1988) Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science 239, 1129–1131.

    Google Scholar 

  • Bolin B. (ed.) (1981) Carbon Cycle Modeling SCOPE I6. John Wiley & Sons, New York. 390 p.

    Google Scholar 

  • Bolin B. (1986) How much CO2 will remain in the atmosphere? The carbon cycle and projecting for the future. In: The Greenhouse Effect, Climatic Change, and Ecosystems SCOPE 29 (eds. B. Bolin, B. R. Doos, J. Jager and R. A. Warrick ). John Wiley and Sons, Chichester, U.K., pp. 93–155.

    Google Scholar 

  • Bolin B. and Charlson R. (1976) On the role of the tropospheric sulfur cycle in the shortwave radiation of the Earth. Ambio 5, 47–54.

    Google Scholar 

  • Bolin B. and Cook R. B. (eds.) (1983) The Major Biogeochemical Cycles and Their Interactions. SCOPE 21, John Wiley and Sons, New York. 554 p.

    Google Scholar 

  • Bolin B., Degens E. T., Kempe S. and Ketner P. (eds.) (1979) The Global Carbon Cycle. SCOPE 13, John Wiley and Sons, New York. 491 p.

    Google Scholar 

  • Bolin B., Doos B. R., Jager J. and Warrick R. A. (1986) The Greenhouse Effect, Climatic Change, and Ecosystems. John Wiley and Sons, New York. 574 p.

    Google Scholar 

  • Bolle H.-J., Seiler W. and Bolin B. (1986) Other greenhouse gases and aerosol: Assessing their role for atmospheric radiative transfer. In: The Greenhouse Effect, Climatic Change, and Ecosystems (eds. B. Bolin, B. R. Doos, J. Jager and R. A. Warrick). SCOPE 29, John Wiley and Sons, Chichester, U.K., pp. 157–203.

    Google Scholar 

  • Boyle E. A. (1986) Paired carbon isotope and cadmium data from benthic foraminifera: Implications for changes in oceanic phosphorus, oceanic circulation, and atmospheric carbon dioxide. Geochim. Cosmochim. Acta 50, 265–276.

    Google Scholar 

  • Boyle E. A. (1988a) The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714.

    Google Scholar 

  • Boyle E. A. (1988b) Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331, 55–56.

    Google Scholar 

  • Boyle E. A. and Keigwin L. D. (1985) Comparison of Atlantic and Pacific paleochemical records for the last 25,000 years: Change in deep ocean circulation and chemical inventories. Earth. Plan. Sci. Lett. 76, 135–150.

    Google Scholar 

  • Brimblecombe P., Hammer C., Rodhe H., Ryaboshapko A. and Boutron C. F. (1989) Human influence on the sulphur cycle. In: Evolution of the Global Biogeochemical Sulphur Cycle (eds. P. Brimblecombe and A. Y. Lein). SCOPE 39, John Wiley and Sons, Ltd., New York, pp. 77–121.

    Google Scholar 

  • Broecker W. S. (1982) Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689–1705.

    Google Scholar 

  • Broecker W. S. (1983) The ocean. Scient. Am. 249, 146–160.

    Google Scholar 

  • Broecker W. S. and Denton G.H. (1989) The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501.

    Google Scholar 

  • Broecker W. S. and Denton G. H. (1990) What drives glacial cycles? Scient. Am. 262, 4856.

    Google Scholar 

  • Broecker W. S. and Peng T.-H. (1987) The role of CaCO3 compensation in the glacial to

    Google Scholar 

  • interglacial atmospheric CO2 change. Global Biogeochem. Cycles 1, 15–30.

    Google Scholar 

  • Broecker W. S. and Peng T.-H. (1989) The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Global Biogeochem. Cycles 3, 215–239.

    Google Scholar 

  • Broecker W. S., Takahashi T., Simpson H. and Peng T.-H. (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418.

    Google Scholar 

  • Buat-Menard P. (ed.) (1986) The Role of Air-Sea Exchange in Geochemical Cycles. D. Reidel, Dordrecht, 549 p.

    Google Scholar 

  • Buat-Menard P. (1986) Air to sea transfer of anthropogenic trace metals. In: The Role of Air-Sea Exchange in Geochemical Cycles (ed. P. Buat-Menard ). D. Reidel, Dordrecht, pp. 477–496.

    Google Scholar 

  • Chameides W. and Davis D. (1982) Chemistry in the troposphere. Chem. Eng. News Oct 4, 38–52.

    Google Scholar 

  • Charlson R. J., Lovelock J. E., Andreae M. O. and Warren S. G. (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo, and climate. Nature 326, 655–661.

    Google Scholar 

  • Cicerone R. J. and Oremland R. S. (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2, 299–327.

    Google Scholar 

  • Cohen Y. and Gordon L. (1979) Nitrous oxide production in the ocean. J. Geophys. Res. 84, 347–353.

    Google Scholar 

  • Conrad R., Seiler W. and Bunse G. (1983) Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O. J. Geophys. Res. 88, 6709–6718.

    Google Scholar 

  • Crutzen P. (1974) Estimates of possible variations in total ozone due to natural causes and human activities. Ambio 3, 201–210.

    Google Scholar 

  • Crutzen P. (1976) Upper limits of atmospheric ozone reductions following increased application of fixed nitrogen to the soil. Geophys. Res. Lett. 3, 169–172.

    Google Scholar 

  • Crutzen P. J. (1983) Atmospheric interactions–Homogeneous gas reactions of C, N, and S containing compounds. In: The Major Biogeochemical Cycles and Their Interactions (eds. B. Bolin and R. B. Cook). SCOPE 21, John Wiley and Sons, New York, pp. 67–114.

    Google Scholar 

  • Crutzen P. J. and Andreae M. O. (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669–1678.

    Google Scholar 

  • Crutzen P. J. and Ehhalt D. (1977) Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 6, 112–117.

    Google Scholar 

  • Cullis C. F. and Hirschler M. M. (1980) Atmospheric sulfur: natural and man-made sources. Atmos. Environ. 14, 1263–1278.

    Google Scholar 

  • Deck B. L. (1981) Nutrient-Element Distributions in the Hudson Estuary, Ph.D. dissertation, Columbia Univ., 416 p.

    Google Scholar 

  • Deevey E. S. Jr. (1973) Sulfur, nitrogen, and carbon in the biosphere. In Carbon and the Biosphere (eds. G. M. Woodwell and E. V. Peacan). USAEC, Washington, D.C., pp. 182-190

    Google Scholar 

  • Delwiche C. C. and Likens G. E. (1977) Biological response to fossil fuel combustion products. In: Global Chemical Cycles and Their Alterations by Man (ed. W. Stumm). Dahlem Konferenzen, Berlin, pp. 73–88.

    Google Scholar 

  • Des Marais D. J. (1985) Carbon exchange between the mantle and the crust, and its effect upon the atmosphere: Today compared to Archean time. In The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist and W. E. Broecker), Geophys. Monogr. 32, AGU, Washington, D.C., pp. 602–611.

    Google Scholar 

  • Ehhalt D. H. (1979) Der atmospharische krieslauf von methan. Naturwissenschaften 66, 307-311.

    Google Scholar 

  • Environmental Protection Agency (1983) The Acidic Deposition Phenomenon and Its Effects. Critical Assessment. Review papers. Volume II. Effects Sciences Public Review Draft. Office of Research and Development, Washington, D.C., U.S. EPA Report No 600/8–83–016B.

    Google Scholar 

  • Erickson D. J. III (1989) Ocean to atmosphere carbon monoxide flux: Global inventory and climate implications. Global Biogeochem. Cycles 3, 305–314.

    Google Scholar 

  • Erlenkeuser H. (1978) The use of radiocarbon in estuarine research. In: Biogeochemistry of Estuarine Sediments. UNESCO, Paris, pp. 140–153.

    Google Scholar 

  • Erlenkeuser H., Suess E. and Willkomm H. (1974) Industrialization affects heavy metal and carbon isotope concentration in recent Baltic Sea sediments. Geochim. Cosmochim. Acta 38, 823–842.

    Google Scholar 

  • Frankignoulle M. (1992) Field measurements of air-sea CO2 exchange. Limnol. Oceanogr. (in press)

    Google Scholar 

  • Galloway J. N. (1989) Atmospheric acidification: Projections for the future. Ambio 18, 161–166.

    Google Scholar 

  • Galloway J. N. and Whelpdale D. M. (1987) WATOX-86 overview and Western North Atlantic ocean S and N atmospheric budgets. Global Biogeochem. Cycles 1, 261–281.

    Google Scholar 

  • Garrels R. M. and Mackenzie F. T. (1971) Evolution of Sedimentary Rocks. WW Norton, New York, 397 p.

    Google Scholar 

  • Garrels R. M. and Mackenzie F. T. (1972) A quantitative model of the sedimentary rock cycle. Mar. Chem. 1, 27–41.

    Google Scholar 

  • Garrels R. M., Mackenzie F. T. and Hunt C. (1975) Chemical Cycles and the Global Environment. W. Kaufmann, Inc., Los Altos, CA, 206 p.

    Google Scholar 

  • Garrels R. M., Lerman A. and Mackenzie F. T. (1976) Controls of atmospheric 02 and CO2–past, present and future. Amer. Sci. 64, 306–315.

    Google Scholar 

  • Genthon C., Barnola J. M., Raynaud D., Lorius C., Jouzel J., Barkov N. I., Korotkevich Y. S. and Kotlyakov V. M. (1987) Vostok ice core: Climate response to CO2 and orbital forcing changes over the last climate cycle. Nature 329, 414–418.

    Google Scholar 

  • Global 2000 Report to the President (1980) The Technical Report, Vol 2. Government Printing Office, Washington, D.C., 766 p.

    Google Scholar 

  • Goldhaber M. B. and Kaplan I. R. (1974) The sulfur cycle. In: The Sea (ed. E.D. Goldberg ). Wiley, New York, Vol 5, pp. 569–655.

    Google Scholar 

  • Graham W. and Duce R. (1979) Atmospheric pathways of the phosphorus cycle. Geochim. Cosmochim. Acta 78, 1195–1208.

    Google Scholar 

  • Grinenko V. A. and Ivanov M. V. (1983) Principal reactions of the global biogeochemical cycle of sulphur. In: The Global Biogeochemical Suter Cycle (eds. M. V. Ivanov and J. R. Freney). SCOPE 19, John Wiley & Sons, Inc., New York, pp. 1–23.

    Google Scholar 

  • Hansen J., Johnson D., Lacis A., Lebedeff S., Lee P., Rind D. and Russell G. (1981) Climatic impact of increasing atmospheric carbon dioxide. Science 213, 957–966.

    Google Scholar 

  • Hoffman J. S., Keyes D. and Titus J. G. (1983) Projecting Future Sea–Level Rise: Methodology, Estimates to the Year 2100, and Research Needs. EPA–230–09–007, Washington D.C., 121 p.

    Google Scholar 

  • Holland H. D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley Interscience, New York, 351 p.

    Google Scholar 

  • Holser W. T., Schidlowski M., Mackenzie F. T. and Maynard J. B. (1988) Geochemical cycles of carbon and sulfur. In: Chemical Cycles in the Evolution of the Earth (eds. C. B. Gregor, R. M. Garrels, F. T. Mackenzie and J. B. Maynard ). Wiley Interscience, New York, pp. 105–173.

    Google Scholar 

  • Holser W. T., Maynard J. B. and Cruikshank K. M. (1989) Modelling of the natural cycle of sulphur through Phanerozoic time. In: Evolution of the Global Biogeochemical Sulphur Cycle (eds. P. Brimblecombe and A. Y. Lein). SCOPE 39, John Wiley and Sons, Ltd., New York, pp. 21–56.

    Google Scholar 

  • Houghton R. A., Hobbie J. E., Melillo J. M., Moore B., Peterson B. J., Shaver G. R. and Woodwell G. M. (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262.

    Google Scholar 

  • Houghton R. A., Schlesinger W. H., Brown S. and Richards J. F. (1985) Carbon dioxide exchange between the atmosphere and terrestrial ecosystems. In: Atmospheric Carbon Dioxide and the Global Carbon Cycle (ed. J. R. Trabalka). DOE/ER-0239, Washington, D.C., pp. 113-140

    Google Scholar 

  • Houghton R. A., Boone R. D., Fruci J. R., Hobbie J. E., Melillo J. M., Palm C. A., Peterson B. J., Shaver G. R. and Woodwell G. M. (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographical distribution of the global flux. Tellus 39, 122–139.

    Google Scholar 

  • Idso S. B. (1982) Carbon Dioxide: Friend or Foe? IBR Press, Tempe, Arizona, 92 p.

    Google Scholar 

  • International Symposium on Trace Gases (1974) Tellus 26, 1–297.

    Google Scholar 

  • Ittekkot V. and Zhang S. (1989) Pattern of particulate nitrogen transport in world rivers. Global Biogeochem. Cycles 3, 383–391.

    Google Scholar 

  • Johnson A. H. and Siccama T. G. (1983) Acid deposition and forest decline. Environ. Sci. Technol. 17, 294A - 305A.

    Google Scholar 

  • J`ouzel J., Lorius C., Petit J. R., Genthon C., Barkov N. I., Kotlyakov V. M. and Petrov V. M. (1987) Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403–408.

    Google Scholar 

  • Judson S. (1968) Erosion of the land. Amer. Sci. 56, 156–374.

    Google Scholar 

  • Keeling C. D., Mook W. G. and Tans P. P. (1979) 13C/12C ratio of atmospheric carbon dioxide. Natur 217, 121–123.

    Google Scholar 

  • Keeling C. D., Bacastow R. B. and Tans P. P. (1980) Predicted shift in the 13C/12C ratio of atmospheric carbon dioxide. Geophys. Res. Lett. 7, 505–508.

    Google Scholar 

  • Keeling C. D., Bacastow R. B., Carter A. F., Piper S. C., Whorf T. P., Heimann M., Mook W. G. and Roeloffzen H. (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In Aspects of Climate Variability in the Pacific and the Western Americas. Geophys. Monogr. 55 (ed. D. H. Peterson), pp. 165–235.

    Google Scholar 

  • Keeling C. D. and Whorf T. P. (1990) Atmospheric concentrations of carbon dioxide, Mauna Loa. In: TRENDS ‘80: A Compendium of Data on Global Change, ORNL/CDIAC-36. (eds. T. A. Boden, P. Kanciruk and M. P. Farrell ). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, pp. 8–9.

    Google Scholar 

  • Keller M. D., Bellows W. K. and Guillard R. R. L. (1989) Dimethylsulfide production in marine phytoplankton. In: Biogenic Sulfur in the Environment (eds. E. S. Saltzman and W. J. Cooper). Am. Chem. Soc. Symp. Ser. 393, Am. Chem. Soc., Washington, pp. 167–182.

    Google Scholar 

  • Khalil M. A. K. and Rasmussen R. A. (1983) Sources, sinks and seasonal cycles of atmospheric methane. J. Geophys. Res. 88, 5131–5144.

    Google Scholar 

  • Khalil M. A. K. and Rasmussen R. A. (1984a) Carbon monoxide in the Earth’s atmosphere: Increasing trend. Science 224, 54–56.

    Google Scholar 

  • Khalil M. A. K. and Rasmussen R. A. (1984b) Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Earth’s atmosphere. Atmos. Envir. 18, 1805–1813.

    Google Scholar 

  • Khalil M. A. K. and Rasmussen R. A. (1988) Nitrous oxide: Trends and global mass balance over the last 3000 years. Ann. Glaciol. 10, 1–7.

    Google Scholar 

  • Khalil M. A. K. and Rasmussen R. A. (1990a) Constraints on the global sources of methane and an analysis of recent budgets. Tellus 42B, 229–236.

    Google Scholar 

  • Khalil M. A. K. and Rasmussen R. A. (1990b) The global cycle of carbon monoxide: Trends and mass balance. Chemosphere 20, 227–242.

    Google Scholar 

  • Khalil M. A. K. and Rasmussen R. A. (1990c) Atmospheric methane: Recent global trends. Environ. Sci. Technol. 24, 549–553.

    Google Scholar 

  • Kohlmaier G. H., Bröhl H., Sire E. P., Plöchl M. and Revelle R. (1987) Modelling stimulation of plants and ecosystem response of present levels of excess atmospheric CO2. Tellus 39, 155–170.

    Google Scholar 

  • Lerman A. (1979) Geochemical Processes - Water and Sediment Environments. John Wiley and Sons, New York, 481 p.

    Google Scholar 

  • Lerman A., Mackenzie F. T. and Garrels R. M. (1975) Modeling of geochemical cycles: Phosphorus as an example. Geol. Soc. Am. Mem. 142, 205–218.

    Google Scholar 

  • Lerman A., Mackenzie F. T. and Geiger R. J. (1989) Environmental chemical stress effects associated with the carbon and phosphorus biogeochemical cycles. In: Ecotoxicology: Problems and Approaches (eds. S. A. Levin, M. A. Harwell, J. R. Kelly and K. D. Kimball ). Springer-Verlag, New York, pp. 315–350.

    Google Scholar 

  • Levy H. (1971) Natural atmosphere: Large radical and formaldehyde concentrations predicted. Science 173, 141–143.

    Google Scholar 

  • Likens G. E. (ed.) (1981) Some Perspectives of the Major Biogeochemical Cycles SCOPE 17. John Wiley & Sons, New York. 175 p.

    Google Scholar 

  • Likens G. E., Bormann H. F. and Johnson N. M. (1981a) Interactions between major biogeochemical cycles in terrestrial ecosystems. In: Some Perspectives of the Major Biogeochemical Cycles (ed. G. E. Likens). SCOPE 17, John Wiley and Sons, N.Y., pp. 93–112.

    Google Scholar 

  • Likens G. E., Mackenzie F. T., Richey J., Sedwell J. R. and Turekian K. K. (eds) (1981b) Flux of Organic Carbon by Rivers to the Sea. USDOE Conf Rept 8009140, Washington, D.C., 397 p.

    Google Scholar 

  • Liss P. S. (1983) Gas transfer: Experiments and geochemical implications. In: Air-Sea Exchange of Gases and Particles (eds. P. S. Liss and G. N. Slinn ). D. Reidel, Dordrecht, pp. 241–298.

    Google Scholar 

  • Lovelock J. (1979) Gaia, A New Look at Life on Earth. Oxford Univ Press, London, 157 p.

    Google Scholar 

  • Mackenzie F.T. (1981) Global carbon cycle: Some minor sinks for CO2. In: Flux of Organic Carbon by Rivers to the Sea (eds. G. E. Likens, F. T. Mackenzie, J. Richey, J. R. Sedwell and K. K. Turekian). USDOE Conf Rept 8009140, Washington, D.C., pp. 360–384.

    Google Scholar 

  • Mackenzie F. T. (1987) Global mixed-layer natural and anthropogenic fluxes. In: Dynamics of the Ocean Surface Mixed Layer (eds. P. Muller and D. Henderson ). Hawaii Inst. Geophys. Spec. Publ., Univ. Hawaii, Honolulu, pp. 291–310.

    Google Scholar 

  • Mackenzie F. T., Lantzy R. J. and Paterson V. (1979) Global trace metal cycles and predictions. Math. Geol. 2, 99–142.

    Google Scholar 

  • Mackenzie F. T., Bischoff W. D. and Paterson V. (1983) Biogeochemical cycles and trends in estimates of inputs of anthropogenic chemical constituents to the environment. Cornell University, Ecology Research Center Report 27, 57 p.

    Google Scholar 

  • Matson P. A. and Vitousek P. M. (1987) Cross-system comparisons of soil nitrogen transformations and nitrous oxide flux in tropical forest ecosystems. Global Biogeochem. Cycles 1, 163–170.

    Google Scholar 

  • Matrai P. A. and Eppley R. W. (1989) Particulate organic sulfur in the waters of the Southern California bight. Global Biogeochem. Cycles 3, 89–103.

    Google Scholar 

  • McConnell J. C., McElroy M. B. and Wofsy S. C. (1971) Natural sources of atmospheric CO. Nature 223, 187–188.

    Google Scholar 

  • McElroy M. B. and Wofsy S. C. (1985) Table 3–9 In: Atmospheric Ozone - 1985. World Meteorol. Organiz. Rept. No. 16, Vol. 1, Washington, D.C., pp. 93.

    Google Scholar 

  • McElroy M. B., Elkins J. W., Wofsy S. C., Kolb C. E., Duran A. P. and Kaplan W. A. (1978) Production and release of N20 from the Potomac Estuary. Limnol. Oceanogr. 23, 1168–1182.

    Google Scholar 

  • Meybeck M. (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450.

    Google Scholar 

  • Migdisov A. A., Ronov A. B. and Grinenko V. A. (1983) The sulphur cycle in the lithosphere. Part I. Reservoirs. In: The Global Biogeochemical Sulfur Cycle (eds. M. V. Ivanov and J. R. Freney). SCOPE 19, John Wiley and Sons, Inc., New York, pp. 25–95.

    Google Scholar 

  • Mix A. C. (1989) Influence of productivity variations on long-term atmospheric CO2. Nature 337, 541–544.

    Google Scholar 

  • Olson J. S., Garrels R. M., Berner R. A., Armentano T. V., Dyer M. J. and Yaalon D. H. (1985) The natural carbon cycle. In: Atmospheric Carbon Dioxide and The Global Carbon Cycle (ed. J. R. Trabalka). USDOE/ER-0239, Washington D.C., pp. 175–213.

    Google Scholar 

  • Peng T.-H. and Broecker, W. S. (1987) C/P ratios in marine detritus. Global Biogeochem. Cycles 1, 155–162.

    Google Scholar 

  • Peterson B. J. and Melillo J. M. (1985) The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B, 117–127.

    Google Scholar 

  • Peierls B. L., Caraco N. F., Pace M. L. and Cole J. J. (1991) Human influence on river nitrogen. Science 350, 387–388.

    Google Scholar 

  • Population Reference Bureau (1980–1990) Population Data Sheet. Washington, D.C. Redfield A. C., Ketchum B. H. and Richard F. A. (1963) The influence of organisms on the composition of seawater. In: The Sea (ed. M. N. Hill ). John Wiley and Sons, New York, Vol. 2, pp. 26–77.

    Google Scholar 

  • Revelle R. and Munk W. (1977) The global carbon dioxide cycle and the biosphere. In: Energy and Climate (ed. National Research Council, Geophysics Study Committee ). Natl. Acad. Press, Washington, D.C., pp. 140–158.

    Google Scholar 

  • Rotty R. M. (1987) A look at 1983 CO2 emissions from fossil fuels (with preliminary data for 1984). Tellus 39B, 203–208.

    Google Scholar 

  • Sabine C. and Mackenzie F. T. (1991) Oceanic sinks for anthropogenic CO2. Int. J. Energy Environ. Econ. 1, 119–127.

    Google Scholar 

  • Schlesinger W. and Melack J. (1981) Transport of organic carbon in the world’s rivers. Tellus 33, 172–187.

    Google Scholar 

  • Seiler W. (1974) The cycle of atmospheric CO. Tellus 27, 116–135.

    Google Scholar 

  • Seitzinger S. P. (1988) Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724.

    Google Scholar 

  • Senum G. L. and Gaffney J. S. (1985) A reexamination of the tropospheric methane cycle: Geophysical implications. In: The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 61–69.

    Google Scholar 

  • Shackleton N. J. (1985) Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere. In: The Carbon Cycle and Atmospheric CO,. Geophys. Monogr. 32 (eds. E. T. Sundquist and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 412–417.

    Google Scholar 

  • Shackleton N. J. and Pisias N. G. (1985) Atmospheric carbon dioxide, orbital forcing and climate. In: The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist, and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 303–317.

    Google Scholar 

  • Siegenthaler U. and Oeschger H. (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39, 140–154.

    Google Scholar 

  • Smil V. (1985) Carbon, Nitrogen, Sulfur: Human Interference in Grand Biospheric Cycles. Plenum Press, New York., 459 p.

    Google Scholar 

  • Smith, S. V. (1984) Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29, 1149–1160.

    Google Scholar 

  • Smith S. V. (1985) Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface. Plant Cell Environ. 8, 387–398.

    Google Scholar 

  • Smith S. V. and Mackenzie F. T. (1987) The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle. Global Biogeochem. Cycles 1, 187–198.

    Google Scholar 

  • Smith S. V. and Veeh H. H. (1989) Mass balance of biogeochemically active materials (C, N, P) in a hypersaline gulf. Estuarine Coast. Shelf Sci. 29, 195–215.

    Google Scholar 

  • Southam J. R. and Hay W. W. (1981) Global sedimentary mass balance and sea level changes. In: The Sea (ed. C. Emiliani ). Wiley Interscience, New York, Vol. 5, pp. 1617–1684.

    Google Scholar 

  • Steudler P. A. and Peterson B. J. (1984) Contribution of the sulfur from salt marshes to the global sulfur cycle. Nature 311, 455–457.

    Google Scholar 

  • Stumm W. (ed.) (1977) Global Chemical Cycles and Their Alterations by Man. Dahlem Konferenzen,Berlin, 346p.

    Google Scholar 

  • Sundquist E. T. (1985) Geological perspectives on carbon dioxide and the carbon cycle. In The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist, and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 5–59.

    Google Scholar 

  • Sundquist E. T. and Broecker W. S. (eds.) (1985) The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present. Geophys. Monogr., 32, AGU, Washington, D.C., 627 p.

    Google Scholar 

  • Svensson B. and Söderlund R. (1975) Nitrogen, phosphorus and sulphur global cycles. Ecological Bulletin, Stockholm, 192 p.

    Google Scholar 

  • Tans P. P., Fung I. Y. and Takahashi T. (1990) Observational constraints on the global atmospheric carbon dioxide budget. Science 247, 1431–1438.

    Google Scholar 

  • Turner S. M., Malin G., Liss P. S., Harbour D. S. and Holligan P. M. (1988) The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol. Oceangr. 33, 364–375.

    Google Scholar 

  • United Nations (1961–1971) Demographic Yearbook. New York.

    Google Scholar 

  • US National Research Council (1977) Carbon Monoxide. National Academy of Sciences press, Washington, D.C., 239 p.

    Google Scholar 

  • US National Research Council (1977) Carbon Dioxide and Climate. National Academy of Sciences press, Washington, D.C., 72 p.

    Google Scholar 

  • Varhelyi G. and Gravenhorst G. (1983) Production rate of airborne sea-salt sulfur deduced from chemical analysis of marine aerosols and precipitation. J. Geophys. Res. 88, 6737–6751.

    Google Scholar 

  • Wells F. J. (1975) The long-run availability of phosphorus: A case study in mineral resource analysis. The Johns Hopkins University Press, Baltimore, 121 p.

    Google Scholar 

  • Weiss R. F. (1981) The temporal and spatial distribution of tropospheric nitrous oxide. J. Geophys. Res. 86, 7185–7195.

    Google Scholar 

  • Wollast R. (1983) Interactions in estuaries and coastal waters. In: The Major Biogeochemical Cycles and Their Interactions (eds. B. Bolin and R. B. Cook). SCOPE 21, John Wiley & Sons, New York, pp. 385–407.

    Google Scholar 

  • Wollast R. and Mackenzie F. T. (1989) Global biogeochemical cycles and climate. In: Climate and Geo-Sciences (eds. A. Berger, S. Schneider and J.-C. Duplessy). Kluwer Academic Publishers, pp. 453–473.

    Google Scholar 

  • Woodwell G. M. (1983) Biotic effects on atmospheric carbon dioxide: A review and projection. In: Changing Climate. Natl. Acad. Press, Washington, D.C., pp. 216.

    Google Scholar 

  • Woodwell G. M. and Houghton R. A. (1977) Biotic influences on the world carbon budget. In: Global Chemical Cycles and Their Alterations by Man (ed. W. Stumm). Dahlem Konferenzen, Berlin, pp. 61–72.

    Google Scholar 

  • Woodwell G. M., Whittaker R. H., Reiners W. A., Likens G. E., Delwiche C. C. and Botkin D. B. (1978) The biota and the world carbon budget. Science 199, 141–146.

    Google Scholar 

  • Zepp R. G. and Andreae M. O. (1989) Factors affecting the photochemical transformation of carbonyl sulfide in seawater. EOS Trans. Amer. Geophys. Union 70, 1023.

    Google Scholar 

  • Zimmerman P., Greenberg J., Wandiga S. and Crutzen P. (1982) Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218, 563–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mackenzie, F.T., Ver, L.M., Sabine, C., Lane, M., Lerman, A. (1993). C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change. In: Wollast, R., Mackenzie, F.T., Chou, L. (eds) Interactions of C, N, P and S Biogeochemical Cycles and Global Change. NATO ASI Series, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76064-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76064-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76066-2

  • Online ISBN: 978-3-642-76064-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics