C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change

  • Fred T. Mackenzie
  • Leah May Ver
  • Christopher Sabine
  • Michael Lane
  • Abraham Lerman
Part of the NATO ASI Series book series (volume 4)


During the last two decades, the global biogeochemical cycles of elements have been investigated in considerable detail (see Bibliography). Much effort has been invested in the carbon cycle, nutrient cycles of nitrogen and phosphorus, and in the sulfur cycle. Interest in these cycles and others, like those of trace metals, has been heightened by problems associated with global, regional and local environmental problems. These problems (Table 1) result in part from increased fluxes of C, N, P and S compounds into the natural biogeochemical cycles of these elements because of the activities of humankind.


Carbon Cycle Dissolve Inorganic Carbon Biogeochemical Cycle Atmospheric Carbon Dioxide Global Carbon Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae M. O. (1986) The ocean as a source of atmospheric sulfur compounds. In: The Role of Air-Sea Exchange in Geochemical Cycling (ed. P. Buat-Menard ). D. Reidel, Dordrecht, pp. 331–362.Google Scholar
  2. Andreae M. O. (1990) Ocean-atmosphere in the global biogeochemical sulfur cycle. Mar. Chem. 30, 1–29.Google Scholar
  3. Andreae M. O. and Barnard W. R. (1984) The marine chemistry of dimethylsulfide. Mar. Chem. 14, 267–279.Google Scholar
  4. Andreae M. O. and Raemdonck H. (1983) Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view. Science 221, 744–747.Google Scholar
  5. Arrhenius S. (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. 41, 237.Google Scholar
  6. Arthur M. A., Dean W. E. and Schianger S. O. (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism and changes in atmospheric CO2: Natural variations archean to present. In: The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 504–529.Google Scholar
  7. Atkinson M. J. and Smith S. V. (1983) C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28, 568–575.Google Scholar
  8. Barnola J. M., Raynaud C., Korotkevich Y. S. and Lorius C. (1987) Vostok ice core provides 160,000 year record of atmospheric CO2. Nature 329, 408–414.Google Scholar
  9. Behrendt H. (1988) Changes in nonpoint nutrient loading into European freshwaters: Trends and consequences since 1950 and not-impossible changes until 2080. Working Paper, Internati. Inst. Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  10. Berger W. H. and Vincent E. (1986) Deep-sea carbonates: Reading the carbon-isotope signal. Geologische Rundschau 75, 249–269.Google Scholar
  11. Berner R. A. (1972) Sulfate reduction, pyrite formation and the oceanic sulfur budget. In: The Changing Chemistry of the Oceans (eds. D. Dryssen and D. Jagner). Nobel Symposium 20, Wiley Interscience, N. Y., pp. 347–361.Google Scholar
  12. Berner E. K. and Berner R. A. (1987) The Global Water Cycle: Geochemistry and Environment. Prentice Hall, Englewood Cliffs, N. J. 397 p.Google Scholar
  13. Berner R. A., Lasaga A. C. and Garrels R. M. (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683.Google Scholar
  14. Berrensheim H. and Jaeschke W. (1983) The contribution of volcanoes to the global atmospheric sulfur budget. J. Geophys. Res. 88, 3732–3740.Google Scholar
  15. Bischoff W. D., Paterson V. L. and Mackenzie F. T. (1984) Geochemical mass balance for sulfur-and nitrogen-bearing acid components: Eastern United States. In: Geological Aspects of Acid Deposition (ed. O. P. Bricker ). Butterworth Publ, Boston, pp. 1–21.Google Scholar
  16. Blake D. R. and Rowland F. S. (1988) Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science 239, 1129–1131.Google Scholar
  17. Bolin B. (ed.) (1981) Carbon Cycle Modeling SCOPE I6. John Wiley & Sons, New York. 390 p.Google Scholar
  18. Bolin B. (1986) How much CO2 will remain in the atmosphere? The carbon cycle and projecting for the future. In: The Greenhouse Effect, Climatic Change, and Ecosystems SCOPE 29 (eds. B. Bolin, B. R. Doos, J. Jager and R. A. Warrick ). John Wiley and Sons, Chichester, U.K., pp. 93–155.Google Scholar
  19. Bolin B. and Charlson R. (1976) On the role of the tropospheric sulfur cycle in the shortwave radiation of the Earth. Ambio 5, 47–54.Google Scholar
  20. Bolin B. and Cook R. B. (eds.) (1983) The Major Biogeochemical Cycles and Their Interactions. SCOPE 21, John Wiley and Sons, New York. 554 p.Google Scholar
  21. Bolin B., Degens E. T., Kempe S. and Ketner P. (eds.) (1979) The Global Carbon Cycle. SCOPE 13, John Wiley and Sons, New York. 491 p.Google Scholar
  22. Bolin B., Doos B. R., Jager J. and Warrick R. A. (1986) The Greenhouse Effect, Climatic Change, and Ecosystems. John Wiley and Sons, New York. 574 p.Google Scholar
  23. Bolle H.-J., Seiler W. and Bolin B. (1986) Other greenhouse gases and aerosol: Assessing their role for atmospheric radiative transfer. In: The Greenhouse Effect, Climatic Change, and Ecosystems (eds. B. Bolin, B. R. Doos, J. Jager and R. A. Warrick). SCOPE 29, John Wiley and Sons, Chichester, U.K., pp. 157–203.Google Scholar
  24. Boyle E. A. (1986) Paired carbon isotope and cadmium data from benthic foraminifera: Implications for changes in oceanic phosphorus, oceanic circulation, and atmospheric carbon dioxide. Geochim. Cosmochim. Acta 50, 265–276.Google Scholar
  25. Boyle E. A. (1988a) The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714.Google Scholar
  26. Boyle E. A. (1988b) Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331, 55–56.Google Scholar
  27. Boyle E. A. and Keigwin L. D. (1985) Comparison of Atlantic and Pacific paleochemical records for the last 25,000 years: Change in deep ocean circulation and chemical inventories. Earth. Plan. Sci. Lett. 76, 135–150.Google Scholar
  28. Brimblecombe P., Hammer C., Rodhe H., Ryaboshapko A. and Boutron C. F. (1989) Human influence on the sulphur cycle. In: Evolution of the Global Biogeochemical Sulphur Cycle (eds. P. Brimblecombe and A. Y. Lein). SCOPE 39, John Wiley and Sons, Ltd., New York, pp. 77–121.Google Scholar
  29. Broecker W. S. (1982) Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689–1705.Google Scholar
  30. Broecker W. S. (1983) The ocean. Scient. Am. 249, 146–160.Google Scholar
  31. Broecker W. S. and Denton G.H. (1989) The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501.Google Scholar
  32. Broecker W. S. and Denton G. H. (1990) What drives glacial cycles? Scient. Am. 262, 4856.Google Scholar
  33. Broecker W. S. and Peng T.-H. (1987) The role of CaCO3 compensation in the glacial toGoogle Scholar
  34. interglacial atmospheric CO2 change. Global Biogeochem. Cycles 1, 15–30.Google Scholar
  35. Broecker W. S. and Peng T.-H. (1989) The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Global Biogeochem. Cycles 3, 215–239.Google Scholar
  36. Broecker W. S., Takahashi T., Simpson H. and Peng T.-H. (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418.Google Scholar
  37. Buat-Menard P. (ed.) (1986) The Role of Air-Sea Exchange in Geochemical Cycles. D. Reidel, Dordrecht, 549 p.Google Scholar
  38. Buat-Menard P. (1986) Air to sea transfer of anthropogenic trace metals. In: The Role of Air-Sea Exchange in Geochemical Cycles (ed. P. Buat-Menard ). D. Reidel, Dordrecht, pp. 477–496.Google Scholar
  39. Chameides W. and Davis D. (1982) Chemistry in the troposphere. Chem. Eng. News Oct 4, 38–52.Google Scholar
  40. Charlson R. J., Lovelock J. E., Andreae M. O. and Warren S. G. (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo, and climate. Nature 326, 655–661.Google Scholar
  41. Cicerone R. J. and Oremland R. S. (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2, 299–327.Google Scholar
  42. Cohen Y. and Gordon L. (1979) Nitrous oxide production in the ocean. J. Geophys. Res. 84, 347–353.Google Scholar
  43. Conrad R., Seiler W. and Bunse G. (1983) Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O. J. Geophys. Res. 88, 6709–6718.Google Scholar
  44. Crutzen P. (1974) Estimates of possible variations in total ozone due to natural causes and human activities. Ambio 3, 201–210.Google Scholar
  45. Crutzen P. (1976) Upper limits of atmospheric ozone reductions following increased application of fixed nitrogen to the soil. Geophys. Res. Lett. 3, 169–172.Google Scholar
  46. Crutzen P. J. (1983) Atmospheric interactions–Homogeneous gas reactions of C, N, and S containing compounds. In: The Major Biogeochemical Cycles and Their Interactions (eds. B. Bolin and R. B. Cook). SCOPE 21, John Wiley and Sons, New York, pp. 67–114.Google Scholar
  47. Crutzen P. J. and Andreae M. O. (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669–1678.Google Scholar
  48. Crutzen P. J. and Ehhalt D. (1977) Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 6, 112–117.Google Scholar
  49. Cullis C. F. and Hirschler M. M. (1980) Atmospheric sulfur: natural and man-made sources. Atmos. Environ. 14, 1263–1278.Google Scholar
  50. Deck B. L. (1981) Nutrient-Element Distributions in the Hudson Estuary, Ph.D. dissertation, Columbia Univ., 416 p.Google Scholar
  51. Deevey E. S. Jr. (1973) Sulfur, nitrogen, and carbon in the biosphere. In Carbon and the Biosphere (eds. G. M. Woodwell and E. V. Peacan). USAEC, Washington, D.C., pp. 182-190Google Scholar
  52. Delwiche C. C. and Likens G. E. (1977) Biological response to fossil fuel combustion products. In: Global Chemical Cycles and Their Alterations by Man (ed. W. Stumm). Dahlem Konferenzen, Berlin, pp. 73–88.Google Scholar
  53. Des Marais D. J. (1985) Carbon exchange between the mantle and the crust, and its effect upon the atmosphere: Today compared to Archean time. In The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist and W. E. Broecker), Geophys. Monogr. 32, AGU, Washington, D.C., pp. 602–611.Google Scholar
  54. Ehhalt D. H. (1979) Der atmospharische krieslauf von methan. Naturwissenschaften 66, 307-311.Google Scholar
  55. Environmental Protection Agency (1983) The Acidic Deposition Phenomenon and Its Effects. Critical Assessment. Review papers. Volume II. Effects Sciences Public Review Draft. Office of Research and Development, Washington, D.C., U.S. EPA Report No 600/8–83–016B.Google Scholar
  56. Erickson D. J. III (1989) Ocean to atmosphere carbon monoxide flux: Global inventory and climate implications. Global Biogeochem. Cycles 3, 305–314.Google Scholar
  57. Erlenkeuser H. (1978) The use of radiocarbon in estuarine research. In: Biogeochemistry of Estuarine Sediments. UNESCO, Paris, pp. 140–153.Google Scholar
  58. Erlenkeuser H., Suess E. and Willkomm H. (1974) Industrialization affects heavy metal and carbon isotope concentration in recent Baltic Sea sediments. Geochim. Cosmochim. Acta 38, 823–842.Google Scholar
  59. Frankignoulle M. (1992) Field measurements of air-sea CO2 exchange. Limnol. Oceanogr. (in press)Google Scholar
  60. Galloway J. N. (1989) Atmospheric acidification: Projections for the future. Ambio 18, 161–166.Google Scholar
  61. Galloway J. N. and Whelpdale D. M. (1987) WATOX-86 overview and Western North Atlantic ocean S and N atmospheric budgets. Global Biogeochem. Cycles 1, 261–281.Google Scholar
  62. Garrels R. M. and Mackenzie F. T. (1971) Evolution of Sedimentary Rocks. WW Norton, New York, 397 p.Google Scholar
  63. Garrels R. M. and Mackenzie F. T. (1972) A quantitative model of the sedimentary rock cycle. Mar. Chem. 1, 27–41.Google Scholar
  64. Garrels R. M., Mackenzie F. T. and Hunt C. (1975) Chemical Cycles and the Global Environment. W. Kaufmann, Inc., Los Altos, CA, 206 p.Google Scholar
  65. Garrels R. M., Lerman A. and Mackenzie F. T. (1976) Controls of atmospheric 02 and CO2–past, present and future. Amer. Sci. 64, 306–315.Google Scholar
  66. Genthon C., Barnola J. M., Raynaud D., Lorius C., Jouzel J., Barkov N. I., Korotkevich Y. S. and Kotlyakov V. M. (1987) Vostok ice core: Climate response to CO2 and orbital forcing changes over the last climate cycle. Nature 329, 414–418.Google Scholar
  67. Global 2000 Report to the President (1980) The Technical Report, Vol 2. Government Printing Office, Washington, D.C., 766 p.Google Scholar
  68. Goldhaber M. B. and Kaplan I. R. (1974) The sulfur cycle. In: The Sea (ed. E.D. Goldberg ). Wiley, New York, Vol 5, pp. 569–655.Google Scholar
  69. Graham W. and Duce R. (1979) Atmospheric pathways of the phosphorus cycle. Geochim. Cosmochim. Acta 78, 1195–1208.Google Scholar
  70. Grinenko V. A. and Ivanov M. V. (1983) Principal reactions of the global biogeochemical cycle of sulphur. In: The Global Biogeochemical Suter Cycle (eds. M. V. Ivanov and J. R. Freney). SCOPE 19, John Wiley & Sons, Inc., New York, pp. 1–23.Google Scholar
  71. Hansen J., Johnson D., Lacis A., Lebedeff S., Lee P., Rind D. and Russell G. (1981) Climatic impact of increasing atmospheric carbon dioxide. Science 213, 957–966.Google Scholar
  72. Hoffman J. S., Keyes D. and Titus J. G. (1983) Projecting Future Sea–Level Rise: Methodology, Estimates to the Year 2100, and Research Needs. EPA–230–09–007, Washington D.C., 121 p.Google Scholar
  73. Holland H. D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley Interscience, New York, 351 p.Google Scholar
  74. Holser W. T., Schidlowski M., Mackenzie F. T. and Maynard J. B. (1988) Geochemical cycles of carbon and sulfur. In: Chemical Cycles in the Evolution of the Earth (eds. C. B. Gregor, R. M. Garrels, F. T. Mackenzie and J. B. Maynard ). Wiley Interscience, New York, pp. 105–173.Google Scholar
  75. Holser W. T., Maynard J. B. and Cruikshank K. M. (1989) Modelling of the natural cycle of sulphur through Phanerozoic time. In: Evolution of the Global Biogeochemical Sulphur Cycle (eds. P. Brimblecombe and A. Y. Lein). SCOPE 39, John Wiley and Sons, Ltd., New York, pp. 21–56.Google Scholar
  76. Houghton R. A., Hobbie J. E., Melillo J. M., Moore B., Peterson B. J., Shaver G. R. and Woodwell G. M. (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262.Google Scholar
  77. Houghton R. A., Schlesinger W. H., Brown S. and Richards J. F. (1985) Carbon dioxide exchange between the atmosphere and terrestrial ecosystems. In: Atmospheric Carbon Dioxide and the Global Carbon Cycle (ed. J. R. Trabalka). DOE/ER-0239, Washington, D.C., pp. 113-140Google Scholar
  78. Houghton R. A., Boone R. D., Fruci J. R., Hobbie J. E., Melillo J. M., Palm C. A., Peterson B. J., Shaver G. R. and Woodwell G. M. (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographical distribution of the global flux. Tellus 39, 122–139.Google Scholar
  79. Idso S. B. (1982) Carbon Dioxide: Friend or Foe? IBR Press, Tempe, Arizona, 92 p.Google Scholar
  80. International Symposium on Trace Gases (1974) Tellus 26, 1–297.Google Scholar
  81. Ittekkot V. and Zhang S. (1989) Pattern of particulate nitrogen transport in world rivers. Global Biogeochem. Cycles 3, 383–391.Google Scholar
  82. Johnson A. H. and Siccama T. G. (1983) Acid deposition and forest decline. Environ. Sci. Technol. 17, 294A - 305A.Google Scholar
  83. J`ouzel J., Lorius C., Petit J. R., Genthon C., Barkov N. I., Kotlyakov V. M. and Petrov V. M. (1987) Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403–408.Google Scholar
  84. Judson S. (1968) Erosion of the land. Amer. Sci. 56, 156–374.Google Scholar
  85. Keeling C. D., Mook W. G. and Tans P. P. (1979) 13C/12C ratio of atmospheric carbon dioxide. Natur 217, 121–123.Google Scholar
  86. Keeling C. D., Bacastow R. B. and Tans P. P. (1980) Predicted shift in the 13C/12C ratio of atmospheric carbon dioxide. Geophys. Res. Lett. 7, 505–508.Google Scholar
  87. Keeling C. D., Bacastow R. B., Carter A. F., Piper S. C., Whorf T. P., Heimann M., Mook W. G. and Roeloffzen H. (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In Aspects of Climate Variability in the Pacific and the Western Americas. Geophys. Monogr. 55 (ed. D. H. Peterson), pp. 165–235.Google Scholar
  88. Keeling C. D. and Whorf T. P. (1990) Atmospheric concentrations of carbon dioxide, Mauna Loa. In: TRENDS ‘80: A Compendium of Data on Global Change, ORNL/CDIAC-36. (eds. T. A. Boden, P. Kanciruk and M. P. Farrell ). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, pp. 8–9.Google Scholar
  89. Keller M. D., Bellows W. K. and Guillard R. R. L. (1989) Dimethylsulfide production in marine phytoplankton. In: Biogenic Sulfur in the Environment (eds. E. S. Saltzman and W. J. Cooper). Am. Chem. Soc. Symp. Ser. 393, Am. Chem. Soc., Washington, pp. 167–182.Google Scholar
  90. Khalil M. A. K. and Rasmussen R. A. (1983) Sources, sinks and seasonal cycles of atmospheric methane. J. Geophys. Res. 88, 5131–5144.Google Scholar
  91. Khalil M. A. K. and Rasmussen R. A. (1984a) Carbon monoxide in the Earth’s atmosphere: Increasing trend. Science 224, 54–56.Google Scholar
  92. Khalil M. A. K. and Rasmussen R. A. (1984b) Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Earth’s atmosphere. Atmos. Envir. 18, 1805–1813.Google Scholar
  93. Khalil M. A. K. and Rasmussen R. A. (1988) Nitrous oxide: Trends and global mass balance over the last 3000 years. Ann. Glaciol. 10, 1–7.Google Scholar
  94. Khalil M. A. K. and Rasmussen R. A. (1990a) Constraints on the global sources of methane and an analysis of recent budgets. Tellus 42B, 229–236.Google Scholar
  95. Khalil M. A. K. and Rasmussen R. A. (1990b) The global cycle of carbon monoxide: Trends and mass balance. Chemosphere 20, 227–242.Google Scholar
  96. Khalil M. A. K. and Rasmussen R. A. (1990c) Atmospheric methane: Recent global trends. Environ. Sci. Technol. 24, 549–553.Google Scholar
  97. Kohlmaier G. H., Bröhl H., Sire E. P., Plöchl M. and Revelle R. (1987) Modelling stimulation of plants and ecosystem response of present levels of excess atmospheric CO2. Tellus 39, 155–170.Google Scholar
  98. Lerman A. (1979) Geochemical Processes - Water and Sediment Environments. John Wiley and Sons, New York, 481 p.Google Scholar
  99. Lerman A., Mackenzie F. T. and Garrels R. M. (1975) Modeling of geochemical cycles: Phosphorus as an example. Geol. Soc. Am. Mem. 142, 205–218.Google Scholar
  100. Lerman A., Mackenzie F. T. and Geiger R. J. (1989) Environmental chemical stress effects associated with the carbon and phosphorus biogeochemical cycles. In: Ecotoxicology: Problems and Approaches (eds. S. A. Levin, M. A. Harwell, J. R. Kelly and K. D. Kimball ). Springer-Verlag, New York, pp. 315–350.Google Scholar
  101. Levy H. (1971) Natural atmosphere: Large radical and formaldehyde concentrations predicted. Science 173, 141–143.Google Scholar
  102. Likens G. E. (ed.) (1981) Some Perspectives of the Major Biogeochemical Cycles SCOPE 17. John Wiley & Sons, New York. 175 p.Google Scholar
  103. Likens G. E., Bormann H. F. and Johnson N. M. (1981a) Interactions between major biogeochemical cycles in terrestrial ecosystems. In: Some Perspectives of the Major Biogeochemical Cycles (ed. G. E. Likens). SCOPE 17, John Wiley and Sons, N.Y., pp. 93–112.Google Scholar
  104. Likens G. E., Mackenzie F. T., Richey J., Sedwell J. R. and Turekian K. K. (eds) (1981b) Flux of Organic Carbon by Rivers to the Sea. USDOE Conf Rept 8009140, Washington, D.C., 397 p.Google Scholar
  105. Liss P. S. (1983) Gas transfer: Experiments and geochemical implications. In: Air-Sea Exchange of Gases and Particles (eds. P. S. Liss and G. N. Slinn ). D. Reidel, Dordrecht, pp. 241–298.Google Scholar
  106. Lovelock J. (1979) Gaia, A New Look at Life on Earth. Oxford Univ Press, London, 157 p.Google Scholar
  107. Mackenzie F.T. (1981) Global carbon cycle: Some minor sinks for CO2. In: Flux of Organic Carbon by Rivers to the Sea (eds. G. E. Likens, F. T. Mackenzie, J. Richey, J. R. Sedwell and K. K. Turekian). USDOE Conf Rept 8009140, Washington, D.C., pp. 360–384.Google Scholar
  108. Mackenzie F. T. (1987) Global mixed-layer natural and anthropogenic fluxes. In: Dynamics of the Ocean Surface Mixed Layer (eds. P. Muller and D. Henderson ). Hawaii Inst. Geophys. Spec. Publ., Univ. Hawaii, Honolulu, pp. 291–310.Google Scholar
  109. Mackenzie F. T., Lantzy R. J. and Paterson V. (1979) Global trace metal cycles and predictions. Math. Geol. 2, 99–142.Google Scholar
  110. Mackenzie F. T., Bischoff W. D. and Paterson V. (1983) Biogeochemical cycles and trends in estimates of inputs of anthropogenic chemical constituents to the environment. Cornell University, Ecology Research Center Report 27, 57 p.Google Scholar
  111. Matson P. A. and Vitousek P. M. (1987) Cross-system comparisons of soil nitrogen transformations and nitrous oxide flux in tropical forest ecosystems. Global Biogeochem. Cycles 1, 163–170.Google Scholar
  112. Matrai P. A. and Eppley R. W. (1989) Particulate organic sulfur in the waters of the Southern California bight. Global Biogeochem. Cycles 3, 89–103.Google Scholar
  113. McConnell J. C., McElroy M. B. and Wofsy S. C. (1971) Natural sources of atmospheric CO. Nature 223, 187–188.Google Scholar
  114. McElroy M. B. and Wofsy S. C. (1985) Table 3–9 In: Atmospheric Ozone - 1985. World Meteorol. Organiz. Rept. No. 16, Vol. 1, Washington, D.C., pp. 93.Google Scholar
  115. McElroy M. B., Elkins J. W., Wofsy S. C., Kolb C. E., Duran A. P. and Kaplan W. A. (1978) Production and release of N20 from the Potomac Estuary. Limnol. Oceanogr. 23, 1168–1182.Google Scholar
  116. Meybeck M. (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450.Google Scholar
  117. Migdisov A. A., Ronov A. B. and Grinenko V. A. (1983) The sulphur cycle in the lithosphere. Part I. Reservoirs. In: The Global Biogeochemical Sulfur Cycle (eds. M. V. Ivanov and J. R. Freney). SCOPE 19, John Wiley and Sons, Inc., New York, pp. 25–95.Google Scholar
  118. Mix A. C. (1989) Influence of productivity variations on long-term atmospheric CO2. Nature 337, 541–544.Google Scholar
  119. Olson J. S., Garrels R. M., Berner R. A., Armentano T. V., Dyer M. J. and Yaalon D. H. (1985) The natural carbon cycle. In: Atmospheric Carbon Dioxide and The Global Carbon Cycle (ed. J. R. Trabalka). USDOE/ER-0239, Washington D.C., pp. 175–213.Google Scholar
  120. Peng T.-H. and Broecker, W. S. (1987) C/P ratios in marine detritus. Global Biogeochem. Cycles 1, 155–162.Google Scholar
  121. Peterson B. J. and Melillo J. M. (1985) The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B, 117–127.Google Scholar
  122. Peierls B. L., Caraco N. F., Pace M. L. and Cole J. J. (1991) Human influence on river nitrogen. Science 350, 387–388.Google Scholar
  123. Population Reference Bureau (1980–1990) Population Data Sheet. Washington, D.C. Redfield A. C., Ketchum B. H. and Richard F. A. (1963) The influence of organisms on the composition of seawater. In: The Sea (ed. M. N. Hill ). John Wiley and Sons, New York, Vol. 2, pp. 26–77.Google Scholar
  124. Revelle R. and Munk W. (1977) The global carbon dioxide cycle and the biosphere. In: Energy and Climate (ed. National Research Council, Geophysics Study Committee ). Natl. Acad. Press, Washington, D.C., pp. 140–158.Google Scholar
  125. Rotty R. M. (1987) A look at 1983 CO2 emissions from fossil fuels (with preliminary data for 1984). Tellus 39B, 203–208.Google Scholar
  126. Sabine C. and Mackenzie F. T. (1991) Oceanic sinks for anthropogenic CO2. Int. J. Energy Environ. Econ. 1, 119–127.Google Scholar
  127. Schlesinger W. and Melack J. (1981) Transport of organic carbon in the world’s rivers. Tellus 33, 172–187.Google Scholar
  128. Seiler W. (1974) The cycle of atmospheric CO. Tellus 27, 116–135.Google Scholar
  129. Seitzinger S. P. (1988) Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724.Google Scholar
  130. Senum G. L. and Gaffney J. S. (1985) A reexamination of the tropospheric methane cycle: Geophysical implications. In: The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 61–69.Google Scholar
  131. Shackleton N. J. (1985) Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere. In: The Carbon Cycle and Atmospheric CO,. Geophys. Monogr. 32 (eds. E. T. Sundquist and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 412–417.Google Scholar
  132. Shackleton N. J. and Pisias N. G. (1985) Atmospheric carbon dioxide, orbital forcing and climate. In: The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist, and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 303–317.Google Scholar
  133. Siegenthaler U. and Oeschger H. (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39, 140–154.Google Scholar
  134. Smil V. (1985) Carbon, Nitrogen, Sulfur: Human Interference in Grand Biospheric Cycles. Plenum Press, New York., 459 p.Google Scholar
  135. Smith, S. V. (1984) Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29, 1149–1160.Google Scholar
  136. Smith S. V. (1985) Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface. Plant Cell Environ. 8, 387–398.Google Scholar
  137. Smith S. V. and Mackenzie F. T. (1987) The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle. Global Biogeochem. Cycles 1, 187–198.Google Scholar
  138. Smith S. V. and Veeh H. H. (1989) Mass balance of biogeochemically active materials (C, N, P) in a hypersaline gulf. Estuarine Coast. Shelf Sci. 29, 195–215.Google Scholar
  139. Southam J. R. and Hay W. W. (1981) Global sedimentary mass balance and sea level changes. In: The Sea (ed. C. Emiliani ). Wiley Interscience, New York, Vol. 5, pp. 1617–1684.Google Scholar
  140. Steudler P. A. and Peterson B. J. (1984) Contribution of the sulfur from salt marshes to the global sulfur cycle. Nature 311, 455–457.Google Scholar
  141. Stumm W. (ed.) (1977) Global Chemical Cycles and Their Alterations by Man. Dahlem Konferenzen,Berlin, 346p.Google Scholar
  142. Sundquist E. T. (1985) Geological perspectives on carbon dioxide and the carbon cycle. In The Carbon Cycle and Atmospheric CO 2. (eds. E. T. Sundquist, and W. E. Broecker). Geophys. Monogr. 32, AGU, Washington, D.C., pp. 5–59.Google Scholar
  143. Sundquist E. T. and Broecker W. S. (eds.) (1985) The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present. Geophys. Monogr., 32, AGU, Washington, D.C., 627 p.Google Scholar
  144. Svensson B. and Söderlund R. (1975) Nitrogen, phosphorus and sulphur global cycles. Ecological Bulletin, Stockholm, 192 p.Google Scholar
  145. Tans P. P., Fung I. Y. and Takahashi T. (1990) Observational constraints on the global atmospheric carbon dioxide budget. Science 247, 1431–1438.Google Scholar
  146. Turner S. M., Malin G., Liss P. S., Harbour D. S. and Holligan P. M. (1988) The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol. Oceangr. 33, 364–375.Google Scholar
  147. United Nations (1961–1971) Demographic Yearbook. New York.Google Scholar
  148. US National Research Council (1977) Carbon Monoxide. National Academy of Sciences press, Washington, D.C., 239 p.Google Scholar
  149. US National Research Council (1977) Carbon Dioxide and Climate. National Academy of Sciences press, Washington, D.C., 72 p.Google Scholar
  150. Varhelyi G. and Gravenhorst G. (1983) Production rate of airborne sea-salt sulfur deduced from chemical analysis of marine aerosols and precipitation. J. Geophys. Res. 88, 6737–6751.Google Scholar
  151. Wells F. J. (1975) The long-run availability of phosphorus: A case study in mineral resource analysis. The Johns Hopkins University Press, Baltimore, 121 p.Google Scholar
  152. Weiss R. F. (1981) The temporal and spatial distribution of tropospheric nitrous oxide. J. Geophys. Res. 86, 7185–7195.Google Scholar
  153. Wollast R. (1983) Interactions in estuaries and coastal waters. In: The Major Biogeochemical Cycles and Their Interactions (eds. B. Bolin and R. B. Cook). SCOPE 21, John Wiley & Sons, New York, pp. 385–407.Google Scholar
  154. Wollast R. and Mackenzie F. T. (1989) Global biogeochemical cycles and climate. In: Climate and Geo-Sciences (eds. A. Berger, S. Schneider and J.-C. Duplessy). Kluwer Academic Publishers, pp. 453–473.Google Scholar
  155. Woodwell G. M. (1983) Biotic effects on atmospheric carbon dioxide: A review and projection. In: Changing Climate. Natl. Acad. Press, Washington, D.C., pp. 216.Google Scholar
  156. Woodwell G. M. and Houghton R. A. (1977) Biotic influences on the world carbon budget. In: Global Chemical Cycles and Their Alterations by Man (ed. W. Stumm). Dahlem Konferenzen, Berlin, pp. 61–72.Google Scholar
  157. Woodwell G. M., Whittaker R. H., Reiners W. A., Likens G. E., Delwiche C. C. and Botkin D. B. (1978) The biota and the world carbon budget. Science 199, 141–146.Google Scholar
  158. Zepp R. G. and Andreae M. O. (1989) Factors affecting the photochemical transformation of carbonyl sulfide in seawater. EOS Trans. Amer. Geophys. Union 70, 1023.Google Scholar
  159. Zimmerman P., Greenberg J., Wandiga S. and Crutzen P. (1982) Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218, 563–565.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Fred T. Mackenzie
    • 1
  • Leah May Ver
    • 1
  • Christopher Sabine
    • 1
  • Michael Lane
    • 1
  • Abraham Lerman
    • 2
  1. 1.Department of Oceanography School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA
  2. 2.Department of Geological SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations