Skip to main content

Energiebedarf — Indirekte Kalorimetrie

  • Conference paper

Part of the book series: Klinische Anästhesiologie und Intensivtherapie ((KAI,volume 40))

Zusammenfassung

Das Monitoring des kritisch kranken Intensivpatienten wurde im Laufe der letzten Jahre nicht nur um zahlreiche Parameter erweitert, auch die Erfassung bestimmter Meßgrößen konnte im Zuge der raschen Weiterentwicklung der Mikroelektronik bezüglich Handhabung und Zuverlässigkeit vielfach verbessert werden. In diesem Zusammenhang überrascht es, daß der Erfassung des O2-Verbrauchs und der CO2-Produktion, zusammengefaßt zu der Methodik der indirekten Kalorimetrie [1], vergleichsweise weniger Aufmerksamkeit in den Entwicklungslabors der Medizingeräteindustrie geschenkt wurde.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adolph M (1985) Umsatzmessungen bei beatmeten Patienten. Klin Ernähr 19

    Google Scholar 

  2. Adolph M, Eckart J (1982) Messung des Energiebedarfs durch die indirekte Kalorimetrie. Klin Ernähr 7: 1–30

    Google Scholar 

  3. Adolph M, Eckart J (1987) Klinische Anwendung der Kalorimetrie beim Erwachsenen. Klin Ernähr 29: 181–201

    Google Scholar 

  4. Adolph M, Eckart J (1988) Flow Sensoren/Flow Messung. Klin Ernähr 30: 75–92

    Google Scholar 

  5. Adolph M, Eckart J (1990) Importance of indirect calorimetry for the nutrition of intensive care patients. In: Müller MJ, Danforth E, Burger AG, Siedentopp U (eds) Hormones and nutrition in obesity and cachexia. Springer, Berlin Heidelberg New York Tokyo, pp 139–162

    Chapter  Google Scholar 

  6. Adolph M, Eckart J (1990) Der Energiebedarf operierter, verletzter und septischer Patienten. Infusionstherapie 17: 5–16

    PubMed  CAS  Google Scholar 

  7. Aprili Z, Hauser R, Norlindh T, Kahnemouyi H (1987) Fettleber unter indirektkalorimetrisch gesteuerter parenteraler Ernährung. Infusionstherapie 14: 239–244

    CAS  Google Scholar 

  8. Askanazi J, Carpentier YA, Jeevanandam M, Michelsen C, Elwyn DH, Kinney JM (1981) Energy expenditure, nitrogen balance and norepinephrine excretion after injury. Surgery 89: 478–484

    PubMed  CAS  Google Scholar 

  9. Bachmann TE (1988) Micral: Horizon indirect calorimeter software enhancement of accuracy and stability. Klin Ernähr 30: 151–157

    Google Scholar 

  10. Behrendt W (1987) Zur Zuverlässigkeit von Schätzungen des Energieverbrauchs poly- traumatisierter und langzeitbeatmeter Patienten. Aktuel Chir 22: 187–191

    Google Scholar 

  11. Behrendt W (1988) Kontinuierliche Messung des posttraumatischen Energieverbrauchs. Zuckschwerdt, München

    Google Scholar 

  12. Behrendt W, Weiland C, Kalff J, Giani (1987) Continuous measurement of oxygen uptake: Evaluation of the Engström metabolic computer and clinical experiences. Acta Anaes- thesiol Scand 31: 10–14.

    Article  CAS  Google Scholar 

  13. Berger R, Adams L (1989) Nutritional support in the critical care setting, part 1. Chest 96: 139–150

    Article  PubMed  CAS  Google Scholar 

  14. Brandi LS, Oleggini M, Lachi S, Frediani M, Bevilacqua S, Mosca F, Ferrannini E (1988) Energy metabolism of surgical patients in the early postoperative period: A reappraisal. Crit Care Med 16: 18–22

    Google Scholar 

  15. Braun U, Turner E, Freiboth K (1982) Ein Verfahren zur Bestimmung von O2-Aufnahme und CO2-Abgabe aus den Atemgasen beim beatmeten Patienten. Anaesthesist 31: 307–310

    PubMed  CAS  Google Scholar 

  16. Braun U, Zundel J, Freiboth K, Weyland W, Turner E, Heidelmeyer CF, Hellige G (1989) Evaluation of methods for indirect calorimetry with a ventilated lung model. Intensive Care Med 15: 196–202

    Article  PubMed  CAS  Google Scholar 

  17. Bredbacka S, Kawachi S, Norlander O, Kirk B (1984) Gas exchange during ventilator treatment: a validation of a computerized technique and its comparison with the Douglas bag method. Acta Anaesthesiol Scand 28: 462–468

    Article  PubMed  CAS  Google Scholar 

  18. Bursztein S, Saphar P, Singer P, Elwyn DH (1989) A mathematical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr 50: 227–230

    PubMed  CAS  Google Scholar 

  19. Carlsson M, Nordenström J, Hedenstierna G (1984) Clinical implications of continuous measurement of energy expenditure in mechanically ventilated patients. Clin Nutr 3: 103–110

    PubMed  CAS  Google Scholar 

  20. Carlsson M, Burgerman R (1985) Overestimation of caloric demand in a long term critically ill patient. Clin Nutr 4: 91–93

    Article  PubMed  CAS  Google Scholar 

  21. Eckart J, Adolph M (1980) Messung des Energiebedarfs und der Verwertung zugeführter Energieträger. Klin Ernähr 3: 31–67

    Google Scholar 

  22. Eckart J, Neeser G, Adolph M (1986) Optimierung von Energie- und Substratzufuhr unter dem Einfluß neuer Meßverfahren. In: Melichar G, Kalff G, Müller FG (Hrsg) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislauf und Stoffwechsel. Karger, Basel (Beiträge zur Intensiv- und Notfallmedizin, Bd 4, S 93–119

    Google Scholar 

  23. Elia M, Livesey G (1988) Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 47: 591–607

    PubMed  CAS  Google Scholar 

  24. Elwyn DH, Gump FE, Munro HM (1979) Changes in nitrogen balance of depleted patients with increasing infusions of glucose. Am J Clin Nutr 32: 1597–1611

    PubMed  CAS  Google Scholar 

  25. Feurer JD, Crosby LO, Mullen JL (1984) Measured and predicted resting energy expenditure in clinically stable patients. Clin Nutr 3: 27–32

    Article  Google Scholar 

  26. Feurer JD, Mullen JL (1986) Measurement of energy expenditure. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition. Saunders, Philadelphia, pp 224–236

    Google Scholar 

  27. Giovannini I, Boldrini G, Castagneto M, Sganga G, Namu G, Pittiruti M, Castiglioni G (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. JPEN 7: 226–230

    Article  CAS  Google Scholar 

  28. Giovannini I, Chiarla C, Boldrini G, Castagneto M (1989) Impact of fat and glucose administration on metabolic and respiratory interactions in sepsis. JPEN 13: 141–146

    Article  CAS  Google Scholar 

  29. Haidane JS, Graham JI (1935) Methods of air analysis. Griffin, London

    Google Scholar 

  30. Harris JA, Benedict FG (1919) Standard basal metabolism constants for physiologists and clinicians. In: A biometric study of basal metabolism in man: Lippincott, Philadelphia (Carnegie Institute of Washington Publication, no 279, pp 223–250)

    Google Scholar 

  31. Hume R (1966) Prediction of lean body mass from height and weight. J Clin Pathol 19: 389–392

    Article  PubMed  CAS  Google Scholar 

  32. Keller HW, Müller JM, Oyen T, Thul P, Brenner U (1988) Einfluß von Canopy- oder Maskenatmung bei der Messung des Energieverbrauchs mit Hilfe des MMC Horizon. Klin Ernähr 30: 124–131

    Google Scholar 

  33. Kinney JM (1980) The application of indirect calorimetry to clinical studies. In: Kinney JM, Buskirk ER, Munro HN (eds) Assessment of energy metabolism in health and disease. Report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus/OH, pp 42–48

    Google Scholar 

  34. Kreymann G (1990) Energieumsatz als klinischer Parameter zur Differentialdiagnose von Infektion oder Sepsis. In: Wolfram G, Eckart J, Adolph M (Hrsg) Künstliche Ernährung. Karger, Basel (Beiträge zur Infusionstherapie, S. 337–349)

    Google Scholar 

  35. Lanschot JJB van, Feenstra BWA, Looijen R, Vermeij CG, Braining HA (1987) Total parenteral nutrition in critically ill surgical patients: fixed vs tailored caloric replacement. Intensive Care Med 13: 46–51

    Article  PubMed  Google Scholar 

  36. Lanschot JJB van, Feenstra BWA, Vermeij CG, Braining HA (1988) Outcome prediction in critically ill patients by means of oxygen consumption index and simplified acute physiology score. Intensive Care Med 14: 44–49

    Article  PubMed  Google Scholar 

  37. Livesey G, Elia M (1988) Estimation of energy expenditure, net carbohydrate utilization and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 47: 608–628

    PubMed  CAS  Google Scholar 

  38. Long CL, Schaffei H, Geiger JW, Schuller WR, Blakemore WS (1979) Metabolic response to injury and illness: Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN 3: 452–456

    Article  CAS  Google Scholar 

  39. Long JM, Wilmore DW, Mason AD (1977) Effect of carbohydrate and fat intake on nitrogen excretion during total intravenous feeding. Ann Surg 185: 417–422

    Article  PubMed  CAS  Google Scholar 

  40. Lübbe N, Seitz W, Bornscheuer A, Verner L (1989) Erste klinische Erfahrungen mit dem S & W Kaloximet, einem Gerät zur O2-Verbrauchsmessung in Anästhesie und Intensivmedizin. Anaesthesist 38: 147–151

    PubMed  Google Scholar 

  41. Mann S, Westenskow DR, Houtchens BA (1985) Measured and predicted caloric expenditure in the acutely ill. Crit Care Med 13: 173–177.

    Article  PubMed  CAS  Google Scholar 

  42. Meriläinen PT (1988) A fast differential paramagnetic O2 sensor. Int J Clin Monit Comput 5: 187

    Article  PubMed  Google Scholar 

  43. Meriläinen PT (1987) Metabolic monitor. Int J Clin Monit Comput 4: 167

    Article  PubMed  Google Scholar 

  44. Norton AC (1980) Portable equipment for gas exchange. In Kinney JM, Buskirk ER, Munro HN (eds) Assessment of energy metabolism in health and disease. Report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus/OH, pp 36–41

    Google Scholar 

  45. Otis AB (1965) Quantitative relationships in steady state gas exchange. In: Fenn WO, Rahn H (eds) Respiration. Am Physiol Soc, Washington/DC (Handbook of physiology, vol 1, sect B, pp 681–684)

    Google Scholar 

  46. Piekarsky MDH, Goldberg MD, Royal SA (1988) Difference between liver and spleen CT-numbers in the normal adult. Radiology 137: 727–731

    Google Scholar 

  47. Raurich IM, Ibanez J, Marse P (1989) Validation of a new closed circuit indirect calorimetry method compared with the open Douglas bag method. Intensive Care Med 15: 274–278

    Article  PubMed  CAS  Google Scholar 

  48. Rhodes JM, Carrol A, Dawson J (1985) A controlled trial of fixed versus tailored caloric intake in patients receiving intravenous feeding after abdominal surgery. Clin Nutr 4: 169–174

    Article  PubMed  CAS  Google Scholar 

  49. Rutten P, Blackburn GL, Flatt JP, Hallowell E, Cochran D (1975) Determination of optimal hyperalimentation infusion rate. J Surg Res 18: 477

    Article  PubMed  CAS  Google Scholar 

  50. Schmitt WGH, Hubener KH (1978) Dichtebestimmung normaler und pathologisch veränderter Lebergewebe als Basisuntersuchung zur computertomographischen Densitometrie von Fettleber. ROEFO 129: 555–559

    Article  CAS  Google Scholar 

  51. Schneeweiß B, Druml W, Graninger W, Kleinberger G, Lenz K, Laggner A (1988) Measurement of oxygen consumption by use of reverse fick-principle and indirect calorimetry in critically ill patients: Klin Ernähr 30: 161–168

    Google Scholar 

  52. Shizgal HM, Martin MF (1988) Caloric requirement of the critically ill septic patient. Crit Care Med 16: 312–317

    Article  PubMed  CAS  Google Scholar 

  53. Singer P, Irving CS, Elwyn DH (1989) The reliability of estimated energy expenditure in critically ill patients. In: Bursztein S, Elwyn DH, Askanazi J, Kinney JM (eds) Energy metabolism, indirect calorimetry and nutrition. Wilhams & Wilkins, Baltimore Hongkong London Sydney, pp 238–242

    Google Scholar 

  54. Takala J, Keinänen O, Väisanen P, Kari A (1989) Measurement of gas exchange in intensive care: Laboratory and clinical validation of a new device. Crit Care Med 17: 1041–1047

    Article  PubMed  CAS  Google Scholar 

  55. Vermeij CG, Feenstra BWA, Lanschot JJB van, Bruining HA (1986) Day-to-day variability of energy expenditure in critically ill surgical patients. Crit Care Med 17: 623–626

    Article  Google Scholar 

  56. Weissmann C, Kemper M, Damask MC, Askanazi J, Hyman AI, Kinney JM (1985) Metabolic rate in the postoperative critical care patient (abstr). Crit Care Med 13: 280

    Article  Google Scholar 

Download references

Authors

Editor information

F. W. Ahnefeld A. Grünert J. E. Schmitz

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adolph, M., Eckart, J. (1990). Energiebedarf — Indirekte Kalorimetrie. In: Ahnefeld, F.W., Grünert, A., Schmitz, J.E. (eds) Parenterale Ernährungstherapie. Klinische Anästhesiologie und Intensivtherapie, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76063-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76063-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53125-8

  • Online ISBN: 978-3-642-76063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics