Advertisement

Energiebedarf — Indirekte Kalorimetrie

  • M. Adolph
  • J. Eckart
Conference paper
Part of the Klinische Anästhesiologie und Intensivtherapie book series (KAI, volume 40)

Zusammenfassung

Das Monitoring des kritisch kranken Intensivpatienten wurde im Laufe der letzten Jahre nicht nur um zahlreiche Parameter erweitert, auch die Erfassung bestimmter Meßgrößen konnte im Zuge der raschen Weiterentwicklung der Mikroelektronik bezüglich Handhabung und Zuverlässigkeit vielfach verbessert werden. In diesem Zusammenhang überrascht es, daß der Erfassung des O2-Verbrauchs und der CO2-Produktion, zusammengefaßt zu der Methodik der indirekten Kalorimetrie [1], vergleichsweise weniger Aufmerksamkeit in den Entwicklungslabors der Medizingeräteindustrie geschenkt wurde.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adolph M (1985) Umsatzmessungen bei beatmeten Patienten. Klin Ernähr 19Google Scholar
  2. 2.
    Adolph M, Eckart J (1982) Messung des Energiebedarfs durch die indirekte Kalorimetrie. Klin Ernähr 7: 1–30Google Scholar
  3. 3.
    Adolph M, Eckart J (1987) Klinische Anwendung der Kalorimetrie beim Erwachsenen. Klin Ernähr 29: 181–201Google Scholar
  4. 4.
    Adolph M, Eckart J (1988) Flow Sensoren/Flow Messung. Klin Ernähr 30: 75–92Google Scholar
  5. 5.
    Adolph M, Eckart J (1990) Importance of indirect calorimetry for the nutrition of intensive care patients. In: Müller MJ, Danforth E, Burger AG, Siedentopp U (eds) Hormones and nutrition in obesity and cachexia. Springer, Berlin Heidelberg New York Tokyo, pp 139–162CrossRefGoogle Scholar
  6. 6.
    Adolph M, Eckart J (1990) Der Energiebedarf operierter, verletzter und septischer Patienten. Infusionstherapie 17: 5–16PubMedGoogle Scholar
  7. 7.
    Aprili Z, Hauser R, Norlindh T, Kahnemouyi H (1987) Fettleber unter indirektkalorimetrisch gesteuerter parenteraler Ernährung. Infusionstherapie 14: 239–244Google Scholar
  8. 8.
    Askanazi J, Carpentier YA, Jeevanandam M, Michelsen C, Elwyn DH, Kinney JM (1981) Energy expenditure, nitrogen balance and norepinephrine excretion after injury. Surgery 89: 478–484PubMedGoogle Scholar
  9. 9.
    Bachmann TE (1988) Micral: Horizon indirect calorimeter software enhancement of accuracy and stability. Klin Ernähr 30: 151–157Google Scholar
  10. 10.
    Behrendt W (1987) Zur Zuverlässigkeit von Schätzungen des Energieverbrauchs poly- traumatisierter und langzeitbeatmeter Patienten. Aktuel Chir 22: 187–191Google Scholar
  11. 11.
    Behrendt W (1988) Kontinuierliche Messung des posttraumatischen Energieverbrauchs. Zuckschwerdt, MünchenGoogle Scholar
  12. 12.
    Behrendt W, Weiland C, Kalff J, Giani (1987) Continuous measurement of oxygen uptake: Evaluation of the Engström metabolic computer and clinical experiences. Acta Anaes- thesiol Scand 31: 10–14.CrossRefGoogle Scholar
  13. 13.
    Berger R, Adams L (1989) Nutritional support in the critical care setting, part 1. Chest 96: 139–150PubMedCrossRefGoogle Scholar
  14. 14.
    Brandi LS, Oleggini M, Lachi S, Frediani M, Bevilacqua S, Mosca F, Ferrannini E (1988) Energy metabolism of surgical patients in the early postoperative period: A reappraisal. Crit Care Med 16: 18–22Google Scholar
  15. 15.
    Braun U, Turner E, Freiboth K (1982) Ein Verfahren zur Bestimmung von O2-Aufnahme und CO2-Abgabe aus den Atemgasen beim beatmeten Patienten. Anaesthesist 31: 307–310PubMedGoogle Scholar
  16. 16.
    Braun U, Zundel J, Freiboth K, Weyland W, Turner E, Heidelmeyer CF, Hellige G (1989) Evaluation of methods for indirect calorimetry with a ventilated lung model. Intensive Care Med 15: 196–202PubMedCrossRefGoogle Scholar
  17. 17.
    Bredbacka S, Kawachi S, Norlander O, Kirk B (1984) Gas exchange during ventilator treatment: a validation of a computerized technique and its comparison with the Douglas bag method. Acta Anaesthesiol Scand 28: 462–468PubMedCrossRefGoogle Scholar
  18. 18.
    Bursztein S, Saphar P, Singer P, Elwyn DH (1989) A mathematical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr 50: 227–230PubMedGoogle Scholar
  19. 19.
    Carlsson M, Nordenström J, Hedenstierna G (1984) Clinical implications of continuous measurement of energy expenditure in mechanically ventilated patients. Clin Nutr 3: 103–110PubMedGoogle Scholar
  20. 20.
    Carlsson M, Burgerman R (1985) Overestimation of caloric demand in a long term critically ill patient. Clin Nutr 4: 91–93PubMedCrossRefGoogle Scholar
  21. 21.
    Eckart J, Adolph M (1980) Messung des Energiebedarfs und der Verwertung zugeführter Energieträger. Klin Ernähr 3: 31–67Google Scholar
  22. 22.
    Eckart J, Neeser G, Adolph M (1986) Optimierung von Energie- und Substratzufuhr unter dem Einfluß neuer Meßverfahren. In: Melichar G, Kalff G, Müller FG (Hrsg) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislauf und Stoffwechsel. Karger, Basel (Beiträge zur Intensiv- und Notfallmedizin, Bd 4, S 93–119Google Scholar
  23. 23.
    Elia M, Livesey G (1988) Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 47: 591–607PubMedGoogle Scholar
  24. 24.
    Elwyn DH, Gump FE, Munro HM (1979) Changes in nitrogen balance of depleted patients with increasing infusions of glucose. Am J Clin Nutr 32: 1597–1611PubMedGoogle Scholar
  25. 25.
    Feurer JD, Crosby LO, Mullen JL (1984) Measured and predicted resting energy expenditure in clinically stable patients. Clin Nutr 3: 27–32CrossRefGoogle Scholar
  26. 26.
    Feurer JD, Mullen JL (1986) Measurement of energy expenditure. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition. Saunders, Philadelphia, pp 224–236Google Scholar
  27. 27.
    Giovannini I, Boldrini G, Castagneto M, Sganga G, Namu G, Pittiruti M, Castiglioni G (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. JPEN 7: 226–230CrossRefGoogle Scholar
  28. 28.
    Giovannini I, Chiarla C, Boldrini G, Castagneto M (1989) Impact of fat and glucose administration on metabolic and respiratory interactions in sepsis. JPEN 13: 141–146CrossRefGoogle Scholar
  29. 29.
    Haidane JS, Graham JI (1935) Methods of air analysis. Griffin, LondonGoogle Scholar
  30. 30.
    Harris JA, Benedict FG (1919) Standard basal metabolism constants for physiologists and clinicians. In: A biometric study of basal metabolism in man: Lippincott, Philadelphia (Carnegie Institute of Washington Publication, no 279, pp 223–250)Google Scholar
  31. 31.
    Hume R (1966) Prediction of lean body mass from height and weight. J Clin Pathol 19: 389–392PubMedCrossRefGoogle Scholar
  32. 32.
    Keller HW, Müller JM, Oyen T, Thul P, Brenner U (1988) Einfluß von Canopy- oder Maskenatmung bei der Messung des Energieverbrauchs mit Hilfe des MMC Horizon. Klin Ernähr 30: 124–131Google Scholar
  33. 33.
    Kinney JM (1980) The application of indirect calorimetry to clinical studies. In: Kinney JM, Buskirk ER, Munro HN (eds) Assessment of energy metabolism in health and disease. Report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus/OH, pp 42–48Google Scholar
  34. 34.
    Kreymann G (1990) Energieumsatz als klinischer Parameter zur Differentialdiagnose von Infektion oder Sepsis. In: Wolfram G, Eckart J, Adolph M (Hrsg) Künstliche Ernährung. Karger, Basel (Beiträge zur Infusionstherapie, S. 337–349)Google Scholar
  35. 35.
    Lanschot JJB van, Feenstra BWA, Looijen R, Vermeij CG, Braining HA (1987) Total parenteral nutrition in critically ill surgical patients: fixed vs tailored caloric replacement. Intensive Care Med 13: 46–51PubMedCrossRefGoogle Scholar
  36. 36.
    Lanschot JJB van, Feenstra BWA, Vermeij CG, Braining HA (1988) Outcome prediction in critically ill patients by means of oxygen consumption index and simplified acute physiology score. Intensive Care Med 14: 44–49PubMedCrossRefGoogle Scholar
  37. 37.
    Livesey G, Elia M (1988) Estimation of energy expenditure, net carbohydrate utilization and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 47: 608–628PubMedGoogle Scholar
  38. 38.
    Long CL, Schaffei H, Geiger JW, Schuller WR, Blakemore WS (1979) Metabolic response to injury and illness: Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN 3: 452–456CrossRefGoogle Scholar
  39. 39.
    Long JM, Wilmore DW, Mason AD (1977) Effect of carbohydrate and fat intake on nitrogen excretion during total intravenous feeding. Ann Surg 185: 417–422PubMedCrossRefGoogle Scholar
  40. 40.
    Lübbe N, Seitz W, Bornscheuer A, Verner L (1989) Erste klinische Erfahrungen mit dem S & W Kaloximet, einem Gerät zur O2-Verbrauchsmessung in Anästhesie und Intensivmedizin. Anaesthesist 38: 147–151PubMedGoogle Scholar
  41. 41.
    Mann S, Westenskow DR, Houtchens BA (1985) Measured and predicted caloric expenditure in the acutely ill. Crit Care Med 13: 173–177.PubMedCrossRefGoogle Scholar
  42. 42.
    Meriläinen PT (1988) A fast differential paramagnetic O2 sensor. Int J Clin Monit Comput 5: 187PubMedCrossRefGoogle Scholar
  43. 43.
    Meriläinen PT (1987) Metabolic monitor. Int J Clin Monit Comput 4: 167PubMedCrossRefGoogle Scholar
  44. 44.
    Norton AC (1980) Portable equipment for gas exchange. In Kinney JM, Buskirk ER, Munro HN (eds) Assessment of energy metabolism in health and disease. Report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus/OH, pp 36–41Google Scholar
  45. 45.
    Otis AB (1965) Quantitative relationships in steady state gas exchange. In: Fenn WO, Rahn H (eds) Respiration. Am Physiol Soc, Washington/DC (Handbook of physiology, vol 1, sect B, pp 681–684)Google Scholar
  46. 46.
    Piekarsky MDH, Goldberg MD, Royal SA (1988) Difference between liver and spleen CT-numbers in the normal adult. Radiology 137: 727–731Google Scholar
  47. 47.
    Raurich IM, Ibanez J, Marse P (1989) Validation of a new closed circuit indirect calorimetry method compared with the open Douglas bag method. Intensive Care Med 15: 274–278PubMedCrossRefGoogle Scholar
  48. 48.
    Rhodes JM, Carrol A, Dawson J (1985) A controlled trial of fixed versus tailored caloric intake in patients receiving intravenous feeding after abdominal surgery. Clin Nutr 4: 169–174PubMedCrossRefGoogle Scholar
  49. 49.
    Rutten P, Blackburn GL, Flatt JP, Hallowell E, Cochran D (1975) Determination of optimal hyperalimentation infusion rate. J Surg Res 18: 477PubMedCrossRefGoogle Scholar
  50. 50.
    Schmitt WGH, Hubener KH (1978) Dichtebestimmung normaler und pathologisch veränderter Lebergewebe als Basisuntersuchung zur computertomographischen Densitometrie von Fettleber. ROEFO 129: 555–559CrossRefGoogle Scholar
  51. 51.
    Schneeweiß B, Druml W, Graninger W, Kleinberger G, Lenz K, Laggner A (1988) Measurement of oxygen consumption by use of reverse fick-principle and indirect calorimetry in critically ill patients: Klin Ernähr 30: 161–168Google Scholar
  52. 52.
    Shizgal HM, Martin MF (1988) Caloric requirement of the critically ill septic patient. Crit Care Med 16: 312–317PubMedCrossRefGoogle Scholar
  53. 53.
    Singer P, Irving CS, Elwyn DH (1989) The reliability of estimated energy expenditure in critically ill patients. In: Bursztein S, Elwyn DH, Askanazi J, Kinney JM (eds) Energy metabolism, indirect calorimetry and nutrition. Wilhams & Wilkins, Baltimore Hongkong London Sydney, pp 238–242Google Scholar
  54. 54.
    Takala J, Keinänen O, Väisanen P, Kari A (1989) Measurement of gas exchange in intensive care: Laboratory and clinical validation of a new device. Crit Care Med 17: 1041–1047PubMedCrossRefGoogle Scholar
  55. 55.
    Vermeij CG, Feenstra BWA, Lanschot JJB van, Bruining HA (1986) Day-to-day variability of energy expenditure in critically ill surgical patients. Crit Care Med 17: 623–626CrossRefGoogle Scholar
  56. 56.
    Weissmann C, Kemper M, Damask MC, Askanazi J, Hyman AI, Kinney JM (1985) Metabolic rate in the postoperative critical care patient (abstr). Crit Care Med 13: 280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Adolph
  • J. Eckart

There are no affiliations available

Personalised recommendations