Skip to main content

Enzymes from Extreme Thermophilic Bacteria as Special Catalysts: Studies on a β-Galactosidase from Sulfolobus solfataricus

  • Conference paper
Life Under Extreme Conditions

Abstract

Biotechnological applications of proteins and enzymes are often hampered by their low stability to heat, pH, organic solvents, and proteolysis. With the aid of protein engineering, however, many attempts are being made to improve the operational stability of current commercial enzymes, and, in a more general sense, to establish guidelines for improving the thermostability of proteins and enzymes (Mozhaev et al. 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartolucci S, Rella R, Guagliardi AM, Raia CA, Gambacorta A, De Rosa M, Rossi M (1987) Malic enzyme from archaebacterium Sulfolobus solfataricus. J Biol Chem 262: 7725–7731

    PubMed  CAS  Google Scholar 

  • Bigelow CC (1967) On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol 16: 187–211

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1985) Life at high temperatures. Science 230: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Buonocore V, Sgambati O, De Rosa M, Esposito E, Gambacorta A (1980) A constitutive ßGalactosidase from the extreme thermoacidophile archaebacterium Caldariella acidophila: properties of the enzyme in the free state and in immobilized whole cells. J Appl Biochem 2: 390–397

    CAS  Google Scholar 

  • Cowan DA, Daniel RM, Martin AM, Morgan HV (1984) Some properties of a ß-galactosidase from an extremely thermophilic bacterium. Biotechnol Bioeng 26: 1141–1145

    Article  PubMed  CAS  Google Scholar 

  • Cubellis MV, Rozzo C, Marino G, Nitti G, Arnone MI, Sannia G (1989) Cloning and sequencing of gene coding for aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 186: 375–381

    Article  PubMed  CAS  Google Scholar 

  • Cubellis MV, Rozzo C, Montecucchi P, Rossi M (1990) Isolation, sequencing and cloning in Escherichia coli of a new β-galactosidase archaebacterial gene. Gene (in press)

    Google Scholar 

  • Davies GE, Stark GR (1970) Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci USA 66: 651–656

    Article  PubMed  CAS  Google Scholar 

  • De Rosa M, Gambacorta A, Bu’ Lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86: 156–164

    PubMed  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Buonocore V, Poerio E (1980) Immobilized bacterial cells containing a thermostable ß-galactosidase. Biotechnol Lett 2: 29–34

    Article  Google Scholar 

  • Fabry S, Lehmacher A, Bode W, Hensel R (1988) Expression of the glyceraldehyde-3-phosphate dehydrogenase gene from the extremely thermophilic archaebacterium Methanothermus fervidus in E. coli. FEBS Lett 237: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Fontana A (1988) Structure and stability of thermophilic enzymes. Biophys Chem 29: 181–183

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S, Fukusumi S, Ohshima T, Beppu T (1988) Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Disctyoglomus thermophilum, and their nucleotide sequence with extremely low guanine-plus-cytonine contents. Eur J Biochem 176: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Kandier O (1984) Archaebacteria — biotechnological implications. Proc Third European Congr Biotechnology. Symp Futuristic Aspects of Biotechnology, München, vol IV, pp 551–560

    Google Scholar 

  • Mozhaev VV, Berezin IV, Mantinek K (1988) Structure-stability relationship in proteins: fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology. CRC Crit Rev Biochem 23: 235–281

    Article  PubMed  CAS  Google Scholar 

  • Penke B, Ferenczi R, Kovacs K (1974) A new acid hydrolysis method for determining tryptophan in peptides and proteins. Anal Biochem 60: 45–50

    Article  PubMed  CAS  Google Scholar 

  • Pisani FM, Relia R, Raia CA, Rozzo C, Nucci R, Gambacorta A, De Rosa M, Rossi M (1989) Thermostable ß-galactosidase from the archaebacterium Sulfolobus solfataricus. Eur J Biochem 187: 321–328

    Article  Google Scholar 

  • Relia R, Raia CA, Pensa M, Pisani FM, Gambacorta A, De Rosa M, Rossi M (1987) A novel archaebacterial NAD’ -dependent alcohol dehydrogenase. Eur J Biochem 167: 475–479

    Article  Google Scholar 

  • Rossi M, Relia R, Pensa M, Bartolucci S, De Rosa M, Gambacorta A, Raia CA, Dell’ Aversano Orabona N (1986) Structure and properties of a thermophilic and thermostable DNA polymerase isolated from Sulfolobus solfataricus. Syst Appl Microbiol 7: 337–341

    Article  CAS  Google Scholar 

  • Rossi M, Cubellis MV, Rozzo C, Moracci M, Relia R (1990) Cloning, sequencing and expression of a new ß-galactosidase from the extreme thermophilic Sulfolobus solfataricus. In: Jardetsky O, Nicolini C (eds) Protein engineering and structure. Plenum, New York (in press)

    Google Scholar 

  • Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed) Thermophiles, vol 7. Wiley, New York, pp 337–341

    Google Scholar 

  • Ulrich JT, McFeters GA, Temple KC (1972) Induction and characterizaton of ß-galactosidase in an extreme thermophile. J Bacteriol 110: 691–698

    PubMed  CAS  Google Scholar 

  • Wallenfels K, Weil R (1972) ß-Galactosidase. In: Boyer PD (ed) The enyzmes, 3rd edn, vol 7. Academic Press, New York, pp 617–663

    Google Scholar 

  • Woese CR (1982) Archaebacteria and cellular origin: an overview. Zentralbl Bakteriol Mikrobiol Hyg I Abt Orig C3: 1–17

    Google Scholar 

  • Woese CR, Wolfe RS (1985) Archaebacteria: the urkingdom. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic Press, New York, pp 561–564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossi, M. et al. (1991). Enzymes from Extreme Thermophilic Bacteria as Special Catalysts: Studies on a β-Galactosidase from Sulfolobus solfataricus . In: di Prisco, G. (eds) Life Under Extreme Conditions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76056-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76056-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76058-7

  • Online ISBN: 978-3-642-76056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics