Skip to main content

How Nature Engineers Protein (Thermo) Stability

  • Conference paper
Life Under Extreme Conditions

Abstract

It is generally accepted that the amino acid sequence of a protein determines its unique three-dimensional structure, which in turn dictates the protein biological function (Anfinsen 1973; Anfinsen and Scheraga 1975). At the present, the structures of some 400 globular proteins have been solved by X-ray crystallography; this wealth of structural information has illustrated the subtle ways in which amino acid chains fold into stable globular structures (Richardson 1981). One of the key problems in modern biochemistry and biophysics is to understand the physical principles and forces, as well as mechanistic pathways, leading to folded proteins. This problem is presently the subject of intense research by a great number of investigators using a variety of theoretical and experimental techniques (Creighton 1978, 1985, 1988; Ghélis and Yon 1982; Jaenicke 1987). However, a quantitative understanding is still lacking of the roles of individual amino acid residues in both directing protein folding and stabilizing protein structure. Only the solution of the protein folding and stability problem will pave the way to prediction of the three-dimensional structure of a protein merely on the basis of its known amino acid sequence, as well as to the design of new proteins with desired biological and physicochemical properties (de novo protein design; Salemme 1985; Oxender and Fox 1987; Ohlendorf et al. 1987; De Grado 1988; Goldenberg 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers GK, Smith FR (1985) Effects of site-specific amino acid modification on protein interactions and biological function. Annu Rev Biochem 54: 597–629

    Article  PubMed  CAS  Google Scholar 

  • Ahern TJ, Klibanov AM (1985) The mechanism of irreversible enzyme inactivation at 100 °C. Science 228: 1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Ahern TJ, Casal JI, Petsko GA, Klibanov AM (1987) Control of oligomeric enzyme thermostability by protein engineering. Proc Natl Acad Sci USA 84: 675–679

    Article  PubMed  CAS  Google Scholar 

  • Alber T, Wozniak JA (1985) A genetic screen for mutations that increase the thermal stability of phage T4 lysozyme. Proc Natl Acad Sci USA 82: 747–750

    Article  PubMed  CAS  Google Scholar 

  • A1ber T, Daopin S, Nye JA, Muchmore DC, Matthews BW (1987) Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry 26: 3754–3758

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB, Scheraga HA (1975) Experimental and theoretical aspects of protein folding. Adv Protein Chem 29: 205–300

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1982) Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21: 6545–6552

    Article  PubMed  CAS  Google Scholar 

  • Argos P, Rossmann MG, Grau UM, Zuber H, Frank G, Tratschin JD (1979) Thermal stability of protein structure. Biochemistry 18: 5698–5703

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 83: 8069–8072

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL, Eisemberg D (1987) Protein stability. In: Oxender DL, Fox CF (eds) Protein engineering. Liss, New York, pp 127–148

    Google Scholar 

  • Barnes LD, Stellwagen E (1973) Enolase from the thermophile Thermus X-1. Biochemistry 12: 1559–1565

    Article  PubMed  CAS  Google Scholar 

  • Baross JA, Deming JW (1983) Growth of“black smoker” bacteria at temperatures of at least 250 °C. Nature 303: 423–426

    Article  CAS  Google Scholar 

  • Beasty AM, Hurle M, Manz JT, Stackhouse T, Matthews CR (1987) Mutagenesis as a probe of protein folding and stability. In: Oxender DL, Fox CF (eds) Protein engineering. Liss, New York, pp 91–102

    Google Scholar 

  • Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26: 1859–1877

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt G, Lüdemann H-D, Jaenicke R (1984) Biomolecules are unstable under “black smoker” conditions. Naturwissenschaften 71: 583–585

    Article  CAS  Google Scholar 

  • Biesecker G, Harris JI, Thierry JC, Walker JE, Wonacott AJ (1977) Sequence and structure of D-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Nature 266: 328–333

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperature. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Brock TD (1985) Life at high temperature. Science 230: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1986) Thermophiles: general, molecular and applied microbiology. Wiley, New York

    Google Scholar 

  • Bryan PN, Rollence ML, Pantoliano MW, Wood J, Finzel BC, Gilliland GL, Howard AJ, Poulos TL (1986) Proteases with enhanced stability: characterization of a thermostable variant of subtilisin. Proteins 1: 326–334

    Article  PubMed  CAS  Google Scholar 

  • Bull HB, Breese K (1973) Thermal stability of proteins. Arch Biochem Biophys 158: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Schellman JA (1989) Low-temperature unfolding of a mutant of phage T4 lysozyme. I. Equilibrium studies. Biochemistry 28: 685–691

    Article  PubMed  CAS  Google Scholar 

  • Chibata I (1978) Immobilized enzymes: research and development. Wiley, New York

    Google Scholar 

  • Colman PM, Jansonius JN, Matthews BW (1972) The structure of thermolysin: an electron density map at 2.3 A resolution. J Mol Biol 70: 701–724

    Article  PubMed  CAS  Google Scholar 

  • Cowan D, Daniel RM, Morgan HW (1985) Thermophilic proteases: properties and potential applications. Trends Biotechnol 3: 68–72

    Article  CAS  Google Scholar 

  • Creighton TE (1978) Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol 33: 231–297

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1985) The problem of how and why proteins adopt folded conformations. J Phys Chem 89: 2452–2459

    Article  CAS  Google Scholar 

  • Creighton TE (1988) The protein folding problem. Science 240: 343–344

    Article  Google Scholar 

  • Dahlquist FN, Long JW, Bigbee WL (1976) Role of calcium in the thermal stability of thermolysin. Biochemistry 15: 1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Daniel RM (1986) The stability of proteins from extreme thermophiles. In: Oxender DL (ed) Genex-UCLA Symposium, vol 39. Liss, New York, pp 291–296

    Google Scholar 

  • Daniel RM, Cowan DA, Morgan HW (1981) The industrial potential of enzymes from extremely thermophilic bacteria. Chem Ind NZ 15: 94–97

    Google Scholar 

  • Daniel RM, Cowan DA, Morgan HW, Curran P (1982) A correlation between protein thermostability and resistance to proteolysis. Biochem J 207: 641–644

    PubMed  CAS  Google Scholar 

  • Deetz JS, Rozzell JD (1988) Enzyme-catalyzed reactions in non-aqueous media. Trends Biotechnol 6: 15–19

    Article  CAS  Google Scholar 

  • De Grado WF (1988) Design of peptides and proteins. Adv Protein Chem 39: 51–124

    Article  Google Scholar 

  • Deming JW (1986) The biotechnological future for newly described, extremely thermophilic bacteria. Microbiol Ecol 12: 111–119

    Article  Google Scholar 

  • Dill KA (1985) Theory for the folding and stability of globular proteins. Biochemistry 24: 1501–1509

    Article  PubMed  CAS  Google Scholar 

  • Dill KA (1987) The stabilities of globular proteins. In: Oxender DL, Fox CF (eds) Protein engineering. Liss, New York, pp 187–192

    Google Scholar 

  • Drucker H, Borchers SL (1971) The role of calcium in thermolysin. Effect on kinetic properties and autodigestion. Arch Biochem Biophys 147: 242–248

    Article  PubMed  CAS  Google Scholar 

  • Estell DA, Grayard TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260: 6518–6521

    PubMed  CAS  Google Scholar 

  • Fabry S, Hensel R (1987) Purification and characterization of D-glyceraldehyde-3-phosphate dehydrogenase from the thermophilic archaebacterium Methanothermus fervidus. Eur J Biochem 165: 147–155

    Article  PubMed  CAS  Google Scholar 

  • Fabry S, Lehmacher A, Bode W, Hensel R (1988) Expression of the glyceraldehyde-3-phosphate dehydrogenase gene form the extremely thermophilic archaebacterium Methanothermus fervidus in E. coli: enzyme purification, crystallization and preliminary crystal data. FEBS Lett 237: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M, Fontana A (1986) Autolysis of thermolysin: isolation and characterization of a folded three-fragment complex. Eur J Biochem 156: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Feder J, Garrett LR, Wildi BS (1971) Studies on the role of calcium in thermolysin. Biochemistry 10: 4552–4556

    Article  PubMed  CAS  Google Scholar 

  • Fersht AR, Shi J-P, Wilkinson AJ, Blow DM, Carter P, Waye MMY, Winter GP (1984) Analysis of enzyme structure and activity by protein engineering. Angew Chem Int Ed Eng 123: 467–473

    Article  Google Scholar 

  • Fontana A (1984) Thermophilic enzymes and their potential use in biotechnology. Proc 3rd Eur Congr Biotechnology, vol 1. VCV Weinheim FRG, pp 187–192

    Google Scholar 

  • Fontana A (1988) Structure and stability of thermophilic enzymes: studies on thermolysin. Biophys Chem 29: 181–193

    Article  PubMed  CAS  Google Scholar 

  • Fontana A (1989) Limited proteolysis of globular proteins occurs at exposed and flexible loops. In: Kotyk A, Skoda J, Pachek C, Kostka V (eds) Highlights in modern biochemistry, vol 2. VSP Zeist, The Netherlands, pp 1711–1726

    Google Scholar 

  • Fontana A, Boccù E, Veronese FM (1976) Effect of EDTA on the conformational stability of thermolysin. Experientia (Suppl) 26: 55–59

    CAS  Google Scholar 

  • Fontana A, Vita C, Boccù E, Veronese FM (1977) A fluor metric study of the role of calcium in the stability of thermolysin. Biochem J 165: 539–545

    PubMed  CAS  Google Scholar 

  • Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986a) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25: 1847–1851

    Article  CAS  Google Scholar 

  • Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986b) Structural and stability features of thermolysin revealed by its autolytic process. In: Bertini I, Luchinat C, Maret W, Zeppezauer M (eds) Zinc enzymes. Birkhäuser Basel, pp 225–237

    Google Scholar 

  • Fontana A, Vita C, Dalzoppo D, Zambonin M (1989) Limited proteolysis as a tool to detect structure and dynamic features of globular proteins: studies on thermolysin. In: Wittman-Liebold B (ed) Methods in protein sequence analysis. Springer, Berlin Heidelberg New York Tokyo, pp 315–324

    Chapter  Google Scholar 

  • Friedman SM (ed) (1978) Biochemistry of thermophily. Academic Press, New York

    Google Scholar 

  • Frömmel C, Höhne WE (1981) Influence of calcium binding on the thermal stability of“thermitase”, a serine protease from Thermoactinomyces vulgaris. Biochim Biophys Acta 670: 25–31

    PubMed  Google Scholar 

  • Frömmel C, Sander C (1989) Thermitase, a thermostable subtilisin: comparison of predicted and experimental structures and the molecular cause of thermostability. Proteins 5: 22–37

    Article  PubMed  Google Scholar 

  • Fujita SC, Oshima T, Imahori K (1976) Purification and properties ofD-glyceraldehyde-3-phosphate dehydrogenase from an extreme thermophile, Thermus thermophilus strain HB8. Eur J Biochem 64: 57–68

    Article  PubMed  CAS  Google Scholar 

  • Fukusumi S, Kamizono A, Horinouchi S, Beppu T (1988) Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile (Dictyoglomus thermophilum). Eur J Biochem 174: 15–21

    Article  PubMed  CAS  Google Scholar 

  • Garrett RA (1985) The uniqueness of archaebacteria. Nature 318: 233–235

    Article  Google Scholar 

  • Gerlt JA (1987) Relationships between enzymatic catalysis and active site structure revealed by applications of site-directed mutagenesis. Chem Rev 87: 1079–1105

    Article  CAS  Google Scholar 

  • Ghélis C, Yon J (1982) Protein folding. Academic Press, New York

    Google Scholar 

  • Ginsburg A, Carroll WR (1965) Some specific ion effects on the conformation and thermal stability of ribonuclease. Biochemistry 4: 2159–2174

    Article  CAS  Google Scholar 

  • Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43: 835–869

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg DP (1985) Dissecting the roles of individual interactions in protein stability: lessons from a circularized protein. J Cell Biochem 29: 321–335

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg DP (1988) Genetic studies of protein stability and mechanisms of folding. Annu Rev Biophys Biophys Chem 17: 481–507

    Article  PubMed  CAS  Google Scholar 

  • Griko YV, Privalov PL, Sturtevant JM, Venyaminov SY (1988) Cold denaturation of staphylococcal nuclease. Proc Natl Acad Sci USA 85: 3343–3347

    Article  PubMed  CAS  Google Scholar 

  • Grütter MG, Hawkes RM, Matthews BW (1979) Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature 277: 667–669

    Article  PubMed  Google Scholar 

  • Guagliardi A, Manco G, Rossi M, Bartolucci S (1989) Stability and activity of a thermostable malic enzyme in denaturants and water-miscible organic solvents. Eur J Biochem 183: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Hartley BS (1986) Commercial prospects for enzyme engineering. Philos Trans R Soc Lond A317: 321–331

    Article  CAS  Google Scholar 

  • Hartley BS, Payton MA (1983) Industrial prospects for thermophiles and thermophilic enzymes. Biochem Soc Symp 48: 133–146

    PubMed  CAS  Google Scholar 

  • Hawkes R, Grütter MG, Schellman JA (1989) Thermodynamic stability and point mutations of bacteriophage T4 lysozyme. J Mol Biol 175: 195–212

    Article  Google Scholar 

  • Hecht MH, Sturtevant JM, Sauer RT (1986) Stabilization of repressor against themal denaturation by site-directed Gly Ala changes in a-helix 3. Proteins 1: 43–46

    Article  PubMed  CAS  Google Scholar 

  • Heinrich MR (ed) (1976) Extreme environments: mechanisms and microbial adaptation. Academic Press, New York

    Google Scholar 

  • Hensel R, Laumann S, Heumann H, Lottspeich F (1987) Characterization of two D-glyceralaldehyde-3-phosphate dehycrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem 170: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Negoro S, Okada H (1985) High production of thermostable ß-galactosidase of Bacillus stearothermophilus in Bacillus subtilis. Appl Environ Microbiol 49: 1547–1549

    PubMed  CAS  Google Scholar 

  • Holmes MA, Matthews BW (1982) Structure of thermolysin refined at 1.6 A resolution. J Mol Biol 160: 623–639

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermo-toga maritima sp. nor represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144: 324–333

    Article  CAS  Google Scholar 

  • Iijima S, Uozumi T, Beppu T (1986) Molecular cloning of Thermus flavus malate dehydrogenase gene. Agric Biol Chem 50: 589–592

    Article  CAS  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index in globular proteins. J Biochem (Tokyo) 88: 1895–1898

    CAS  Google Scholar 

  • Imanaka T (1983) Host-vector systems in thermophilic Bacilli and their applications. Trends Biotechnol 1: 139–144

    Article  CAS  Google Scholar 

  • Imanaka T, Shibagaki M, Takagi M (1986) A new way of enhancing the thermostability of proteases. Nature 324: 695–697

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R (1981) Enzymes under extremes of physical conditions. Annu Rev Biophys Bioeng 10: 1–67

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R (1987) Folding and association of proteins. Prog Biophys Mol Biol 49: 117–237

    Article  PubMed  CAS  Google Scholar 

  • Joliff G, Béguin P, Juy M, Ryter A, Poljak R, Aubert J-P (1986) Isolation, crystallization and properties of a new cellulase of Clostridium thermocellum overproduced in Escherichia coli. Biotechnology 4: 896–900

    Article  CAS  Google Scholar 

  • Kandler O (1981) Archaebacteria and phylogeny of organisms. Naturwissenschaften 68: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Kandler O (ed) (1982) Archaebacteria. Fischer, Stuttgart

    Google Scholar 

  • Kandler O (1984) Archaebacteria: biotechnological implications. Proc 3rd Eur Congr Biotechnology, vol 4. VCH Weinheim FRG, pp 551–560

    Google Scholar 

  • Karpusas M, Baase WA, Matsumura M, Matthews BW (1989) Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci USA 86: 8237–8241

    Article  PubMed  CAS  Google Scholar 

  • Klibanov AM, Ahern TJ (1987) Thermal stability of proteins. In: Oxender DL, Fox CR (eds) Protein engineering. Liss, New York, pp 213–218

    Google Scholar 

  • Kristjansson JK (1989) Thermophilic organisms as sources of thermostable enzymes. Trends Biotechnol 7: 349–353

    Article  CAS  Google Scholar 

  • Kubo M, Imanaka T (1988) Cloning and nucleotide sequence of the highly thermostable neutral protease gene from B. stearothermophilus. J Gen Microbial 134: 1883–1892

    CAS  Google Scholar 

  • Lamed R, Bayer EA, Saha BC, Zeikus JC (1988) Biotechnological potential of enzymes from unique thermophiles. In: Durand G, Bobichon L, Florent J (eds) 8th Int Biotechnology Symposium, Societé Française de Microbiologie, pp 371–383

    Google Scholar 

  • Langridge J (1968) Genetic and enzymatic experiments relating to the tertiary structure of ßgalactosidase. J Bacteriol 96: 1711–1717

    PubMed  CAS  Google Scholar 

  • Lapanje S (1978) Physicochemical aspects of protein denaturation. Wiley, New York

    Google Scholar 

  • Leatherbarrow RJ, Fersht AR (1986) Protein engineering. Protein Eng 1: 7–16

    Article  PubMed  CAS  Google Scholar 

  • Liao H, McKenzie T, Hageman R (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci USA 83: 576–580

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl LG, Sherod D (1976a) Proteins from thermophilic microorganisms. In: Heinrich M (ed) Mechanisms of microbial adaptation. Academic Press, New York, pp 147–187

    Google Scholar 

  • Ljungdahl LG, Sherod D (1976b) Thermophilic microorganisms in extreme environments. Bacteriol Rev 37: 320–342

    Google Scholar 

  • Love DR, Streiff MB (1987) Molecular cloning of a ß-glucosidase gene from an extremely thermophilic anaerobe in E. coli and B. subtilis. Biotechnology 5: 384–387

    Article  CAS  Google Scholar 

  • Matsumura M, Aiba S (1985) Screening for thermostable mutant of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile (B. stearothermophilus). J Biol Chem 260: 15228–15233

    Google Scholar 

  • Matsumura M, Yasumura S, Aiba S (1986) Cumulative effect of intragenic amino acid replacements on the thermostability of a protein. Nature 323: 356–358

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Becktel WJ, Levitt M, Matthews BW (1989a) Stabilization of phage T4 lysozyme by engineering disulfide bonds. Proc Natl Acad Sci USA 86: 6562–6566

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Signor G, Matthews BW (1989b) Substantial increase of protein stability by multiple disulfide bonds. Nature 142: 291–293

    Article  Google Scholar 

  • Matsumura M, Wozniak JA, Daopin S, Matthews BW (1989c) Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization. J Biol Chem 264: 16059–16066

    PubMed  CAS  Google Scholar 

  • Matthews BW (1987) Genetic and structural analysis of the protein stability problem. Biochemistry 26: 6885–6888

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW, Jansonius JN, Colman PM, Schenborn BP, Dupourque D (1972) Three-dimensional structure of thermolysin. Nature 238: 37–41

    Article  CAS  Google Scholar 

  • Matthews BW, Weaver LH, Kester WR (1974) The conformation of thermolysin. J Biol Chem 249: 8030–8044

    PubMed  CAS  Google Scholar 

  • Matthews BW, Nicholson H, Becktel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 84: 6663–6667

    Article  PubMed  CAS  Google Scholar 

  • Matthews CR, Crisanti MM, Gepner GL, Velicelebi G, Sturtevant J (1980) Effect of single amino acid substitutions on the thermal stability of the a-subunit of tryptophan synthase. Biochemistry 19: 1290–1293

    Article  PubMed  CAS  Google Scholar 

  • Menéndez-Arias L, Argos P (1989) Engineering protein thermal stability: sequence statistics point to residue substitution in a-helices. J Mol Biol 206: 397–406

    Article  PubMed  Google Scholar 

  • Merkler DJ, Farrington GR, Wedler FC (1981) Protein thermostability. Correlations between calculated macroscopic parameters and growth temperature for closely related thermophilic and mesophilic Bacilli. Int J Peptide Protein Res 18: 430–442

    Article  CAS  Google Scholar 

  • Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334: 609–611

    Article  PubMed  CAS  Google Scholar 

  • Mozhaev VV, Martinek K (1984) Structure-stability relationships in proteins: new approaches to stabilizing enzymes. Enzyme Microb Technol 6: 50–59

    Article  CAS  Google Scholar 

  • Mozhaev VV, Berezin IV, Martinek K (1988) Structure-stability relationship in proteins: fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology. CRC Crit Rev Biochem 23: 235–281

    Article  PubMed  CAS  Google Scholar 

  • Mulkerrin MG, Perry LJ, Wetzel R (1986) Stability and solution structure of a disulfide cross-linked T4 lysozyme. In: Oxender DL (ed) Protein structure, folding and design. Liss, New York, pp 297–305

    Google Scholar 

  • Nagahari K, Koshikawa T, Sakaguchi K (1980) Cloning and expression of the leucine gene from Thermus thermophilus in Escherichia coli. Gene 10: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Tanizawa K, Esaki N, Sakamoto Y, Ohshima T, Tanaka H, Soda K (1988) Gene cloning and sequence determination of leucine dehydrogenase from Bacillus stearothermophilus and structural comparison with other NAD(P)*-dependent dehydrogenases. Biochemistry 27: 9056–9062

    Article  PubMed  CAS  Google Scholar 

  • Nicholson H, Becktel WJ, Matthews BW (1988) Enhanced protein thermostability from designed mutations that interact with a-helix dipoles. Nature 336: 651–656

    Article  PubMed  CAS  Google Scholar 

  • Nojima H, Ikai A, Oshima T, Noda H (1977) Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change. J Mol Biol 116: 429–442

    Article  PubMed  CAS  Google Scholar 

  • Nosoh Y, Sekiguchi T (1990) Protein engineering for thermostability. Trends Biotechnol 8: 16–20

    Article  PubMed  CAS  Google Scholar 

  • Ogasahara K, Tsunasawa S, Soda Y, Yutani K, Sugino Y (1985) Effect of single amino acid substitutions on the protease susceptibility of tryptophan synthase a-subunit. Eur J Biochem 150: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Ohlendorf DH, Finzel BC, Weber PC, Salemme FR (1987) Some design principles or structurally stable proteins. In: Oxender DL, Fox GF (eds) Protein engineering. Liss, New York, pp 165–173

    Google Scholar 

  • Oshima T (1979) Molecular basis for unusual thermostabilities of cell constituents from an extreme thermophile, Thermus thermophilus. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 455–469

    Google Scholar 

  • Oshima T, Soda K (1989) Thermostable amino acid dehydrogenases. Applications and gene cloning. Trends Biotechnol 7: 210–214

    Article  Google Scholar 

  • Oste C (1988) Polymerase chain reaction. Biotechniques 6: 162–167

    PubMed  CAS  Google Scholar 

  • Oxender DL, Fox CF (eds) (1987) Protein engineering. Liss, New York

    Google Scholar 

  • Pace CN (1975) The stability of globular proteins. CRC Crit Rev Biochem 3: 1–43

    Article  PubMed  CAS  Google Scholar 

  • Pace CN, Laurents DR (1989) A new method for determining the heat capacity change for protein folding. Biochemistry 28: 2520–2525

    Article  PubMed  CAS  Google Scholar 

  • Pantoliano MW, Ladner RC, Bryan PN, Rollence ML, Wood JF, Poulos TL (1987a) Protein engineering of subtilisin BPN: enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26: 2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Pantoliano MW, Ladner RC, Bryan PN, Rollence ML, Wood JF, Gilliland GL, Stewart DB, Poulos TL (1987b) The engineering of disulfide bonds, electrostatic interactions and hydrophobic contacts for the stabilization of subtilisin BPN’. Protein Eng 1: 229–335

    Google Scholar 

  • Pantoliano MW, Whitlow M, Wood JF, Rollence ML, Finzel BC, Gilliland GL, Poulos T, Bryan PN (1988) The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry 27: 8311–8317

    Article  PubMed  CAS  Google Scholar 

  • Pantoliano MW, Whitlow M, Wood JF, Dodd SW, Hardman KD, Rollence ML, Bryan PN (1989) Large increase in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding. Biochemistry 28: 7205–7213

    Article  PubMed  CAS  Google Scholar 

  • Pauptit RA, Karlsson R, Picot D, Jenkins JA, Niklas-Reimer AS, Jansonius JN (1988) Crystal structure of neural protease from Bacillus cereus refined at 3.0. A resolution and comparison with the homologous, but more thermostable enzyme thermolysin. J Mol Biol 199: 525–537

    Article  PubMed  CAS  Google Scholar 

  • Perry LJ, Wetzel R (1984) Disulfide bond engineered into T4 lysozyme:stabilization of the protein towards thermal inactivation. Science 226: 555–557

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1978) Electrostatic effects in proteins. Nature 201: 1187–1191

    CAS  Google Scholar 

  • Perutz MF, Raidt H (1975) Stereochemical basis of heat stability in bacterial ferredoxin and in hemoglobin A2. Nature 255: 256–259

    Article  PubMed  CAS  Google Scholar 

  • Pfeil W (1981) The problem of the stability of globular proteins. Mol Cell Biochem 40: 3–28

    Article  PubMed  CAS  Google Scholar 

  • Ponnuswamy PK, Muthusamy R, Manavalan P (1982) Amino acid composition and thermal stability of proteins. Int J Biol Macromol 4: 186–191

    Article  CAS  Google Scholar 

  • Privalov PL (1979) Stability of proteins: small globular proteins. Adv Prot Chem 33: 167–241

    Article  CAS  Google Scholar 

  • Privalov PL (1982) Stability of proteins: proteins which do not present a single cooperative system. Adv Protein Chem 35: 1–104

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL, Griko YU, Venyaminov SY, Kutyshenko VP (1986) Cold denaturation of myoglobin. J Mol Biol 190: 487–498

    Article  PubMed  CAS  Google Scholar 

  • Rastetter WH (1983) Enzyme engineering: applications and promise. Trends Biotechnol 1: 80–84

    Article  CAS  Google Scholar 

  • Relia R, Raia CA, Trincone A, Gambacorta A, De Rosa M, Rossi M (1987) Properties and specificity of an alcohol dehydrogenase from the thermophilic archaebacterium Sulfolobus solfataricus. In: Laane C (ed) Biocatalysis in organic media. Elsevier Science, Amsterdam, pp 273–278

    Google Scholar 

  • Relia R, Pisani FM, Grandi C, Fontana A, Rossi M (1988) Heat- and detergent-induced activation of ß-galactosidase from Sulfolobus solfataricus. Proc 3rd Meet Proteins. Naples, Italy, 5–7 May Abstr p 48

    Google Scholar 

  • Remington SJ, Anderson WF, Owen J, Ten Eyck LF, Grainger CT, Matthews BW (1978) Structure of the lysozyme from bacteriophage T4: an electron density map at 2.4 A resolution. J Mol Biol 118: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chem 34: 167–339

    Article  PubMed  CAS  Google Scholar 

  • Roche RS, Voordouw G (1978) The structural and functional roles of metal ions in thermolysin. CRC Crit Rev Biochem 5: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Rossi M (1987) Applications and potentials of prokaryotic thermophiles. Biofutur 53: 39–42

    Google Scholar 

  • Rossi M (1988) Enzymes from extreme thermophilic bacteria as models of special catalysts. Proc Eur Conf Biotechnology. Verona, November 7–8, pp 46–50

    Google Scholar 

  • Saha BC, Zeikus JG (1989) Novel highly thermostable pullulanase from thermophiles. Trends Biotechnol 7: 234–239

    Article  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Ehrlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Article  PubMed  CAS  Google Scholar 

  • Salemme FR (1985) Engineering aspects of protein structure. Ann NY Acad Sci 439: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Schellman C (1986) Proteolysis as a probe for motility in mutant bacteriophage TA lysozymes. Biophys J 49: 4932

    Google Scholar 

  • Schellman JA (1987) The thermodynamic stability of proteins. Annu Rev Biophys Chem 16: 115–137

    Article  CAS  Google Scholar 

  • Schellman JA, Hawkes RB (1980) The measurement of protein stability. In: Jaenicke R (ed) Protein folding. Elsevier/North Holland Biomedical Press, Amsterdam, pp 331–343

    Google Scholar 

  • Schellman JA, Lindorfer M, Hawkes R, Grütter M (1981) Mutations and protein stability. Biopolymers 20: 1989–1999

    Article  PubMed  CAS  Google Scholar 

  • Schwarz WG, Grabnitz F, Staudenbauer WL (1986) Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl Environ Microbiol 51: 1293–1289

    PubMed  CAS  Google Scholar 

  • Sekiguchi T, Suda M, Sekiguchi T, Nosoh Y (1986a) Cloning and DNA homology of 3isopropylmalate dehydrogenase from thermophilic bacilli. FEMS Microbiol Lett 36: 41–45

    Article  CAS  Google Scholar 

  • Sekiguchi T, Ortega-Cesena J, Nosoh Y, Ohashi S, Tsuda K, Kanaya S (1986b) DNA and amino acid sequences of 3-isopropylmalate dehydrogenase of Bacillus coaqulans: comparison with enzyme of Saccharomyces cerevisiae and Thermus thermophilus. Biochim Biophys Acta 867: 36–44

    CAS  Google Scholar 

  • Shami EY, Rothstein A, Ramjeesingh M (1989) Stabilization of biologically active proteins. Trends Biotechnol 7: 186–190

    Article  CAS  Google Scholar 

  • Shaw WV (1987) Protein engineering: the design, synthesis and characterization of factitious proteins. Biochem J 246: 1–17

    PubMed  CAS  Google Scholar 

  • Singleton R, Amelunxen RE (1973) Proteins from thermophilic microorganisms. Bacteriol Rev 37: 320–342

    PubMed  CAS  Google Scholar 

  • Singleton R, Middaugh CR, McElroy RP (1977) Comparison of proteins from thermophilic and non-thermophilic sources in terms of structural parameters inferred from amino acid composition. Int J Peptide Protein Res 10: 39–50

    Article  CAS  Google Scholar 

  • Sonnleitner B (1984) Biotechnology of thermophilic bacteria: growth, products and application. Adv Biochem Eng 3: 69–138

    Google Scholar 

  • Sonnleitner B, Fiechter A (1983) Advantages of using thermophiles in biotechnological processes: expectations and reality. Trends Biotechnol 1: 74–80

    Article  Google Scholar 

  • Stellwagen E, Cronlund MM, Barnes LD (1973) A thermostable enolase from the extreme thermophile Thermus aquaticus YT- 1. Biochemistry 12: 1552–1553

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature 300: 258–260

    Article  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236: 822–824

    Article  PubMed  CAS  Google Scholar 

  • Strehlow KC, Baldwin RL (1989) Effect of the substitution Ala Gly at each of five residue positions in the C-peptide helix. Biochemistry 28: 2130–2133

    Article  PubMed  CAS  Google Scholar 

  • Sundaram TK, Wright IP, Wilkinson AE (1980) Malate dehydrogenase from thermophilic and mesophilic bacteria: molecular size, subunit structure, amino acid composition, immunochemical homology and catalytic activity. Biochemistry 19: 2017–2022

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Imai T (1982) Abnormally high tolerance against proteolysis of an exo-oligo-1,6-glucosidase from thermophile Bacillus thermoglucosidicus RP 1006, compared with its mesophilic counterpart from Bacillus cereus ATCC 7064. Biochim Biophys Acta 705: 124–126

    Article  PubMed  CAS  Google Scholar 

  • Tajima M, Uvahe I, Yutani K, Okada H (1976) Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease. Eur J Biochem 64: 243–247

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kawano N, Oshima T (1981) Cloning of the 3-isopropylmalate dehydrogenase of an extreme thermophile and partial purification of the gene product. J Biochem 89: 677–682

    PubMed  CAS  Google Scholar 

  • Tanford C (1968) Protein denaturation. Adv Protein Chem 23: 121–282

    Article  PubMed  CAS  Google Scholar 

  • Tanford C (1970) Protein denaturation. Adv Protein Chem 24: 1–95

    Article  PubMed  CAS  Google Scholar 

  • Tanford C (1980) The hydrophobic effect. Wiley, New York

    Google Scholar 

  • Titani K, Hermodson MA, Ericsson LH, Walsh KA, Neurath H (1972) Amino acid sequence of thermolysin. Nature 238: 35–37

    CAS  Google Scholar 

  • Torchilin VP, Martinek K (1979) Enzyme stabilization without carriers. Enzyme Microb Technol 1: 74–82

    Article  CAS  Google Scholar 

  • Tronrud DE, Monzingo AF, Matthews BW (1986) Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin. Eur J Biochem 157: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi M, Ohta S, Nakanishi M (1978) Structural fluctuation of protein and thermophily. In: Friedman M (ed) Biochemistry of thermophily. Academic Press, New York, pp 251–266

    Google Scholar 

  • Tsukagoshi N, Ihara H, Yamagata H, Ukada S (1984) Cloning and expression of a thermophilic a-amylase gene from Bacillus stearothermophilus in Escherichia coli. Mol Gen Genet 193: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Ulmer KM (1983) Protein engineering. Science 219: 666–671

    Article  PubMed  CAS  Google Scholar 

  • Veronese FM, Bocci’ E, Schiavon O, Grandi C, Fontana A (1984) General stability of thermophilic enzymes: studies on 6-phosphogluconate dehydrogenase from B. stearothermophilus and yeast. J Appl Biochem 6: 39–47

    PubMed  CAS  Google Scholar 

  • Vihinen M (1987) Relationship of protein flexibility to thermostability. Protein Eng 1: 477–480

    Article  PubMed  CAS  Google Scholar 

  • Vita C, Dalzoppo D, Fontana A (1985) Limited proteolysis of thermolysin by subtilisin: isolation and characterization of a partially active enzyme derivative. Biochemistry 24: 1798–1806

    Article  PubMed  CAS  Google Scholar 

  • Volkin DB, Klibanov AM (1987) Thermal destruction processes in proteins involving cystine residues. J Biol Chem 262: 2945–2950

    PubMed  CAS  Google Scholar 

  • von Hippel PH, Schleich T (1969) The effect of salts on the conformational stability of globular proteins. In: Timasheff SN, Fasman GD (eds) Structure and stability of biological macromolecules. Dekker, New York, pp 417–574

    Google Scholar 

  • von Hippel PH, Wong K-Y (1965) On the conformational stability of globular proteins: the effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J Biol Chem 240: 3909–3923

    Google Scholar 

  • Voordouw G, Roche RS (1975) The role of bound calcium ions in thermostable proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus. Biochemistry 14: 4667–4673

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G, Milo C, Roche RS (1976) Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry 15: 3716–3724

    Article  PubMed  CAS  Google Scholar 

  • Walker JE (1979) Enzymes from thermophilic bacteria. In: Hofmann E (ed) Proteins: structure, function and industrial applications. Pergamon, Oxford, pp 211–225

    Google Scholar 

  • Walker JE, Wonacott AJ, Harris JJ (1980) Heat stability of a tetrameric enzyme Dglyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 108: 581–586

    Article  PubMed  CAS  Google Scholar 

  • Weaver LH, Kester WR, Ten Eyk LF, Matthews BW (1976) The structure and stability of thermolysin. Experientia (Suppl) 26: 31–39

    CAS  Google Scholar 

  • Weaver LH, Grey TM, Grütter MG, Anderson DE, Wozniak JA, Dahlquist FW, Matthews BW (1989) High-resolution structure of the temperature-sensitive mutant of phage lysozyme, Arg96–His. Biochemistry 28: 3793–3797

    Article  PubMed  CAS  Google Scholar 

  • Wells JA, Powers DB (1986) In vivo formation and stability of engineered disulfide bonds in subtilisin. J Biol Chem 261: 6564–6570

    PubMed  CAS  Google Scholar 

  • Wetzel R (1988) Harnessing disulfide bonds using protein engineering. Trends Biochem Sci 12: 478–482

    Article  Google Scholar 

  • Wetzel R, Perry LJ, Baase WA, Becktel WJ (1988) Disulfide bonds and thermal stability in T4 lysozyme. Proc Natl Acad Sci USA 85: 401–405

    Article  PubMed  CAS  Google Scholar 

  • White RH (1984) Hydrolytic stability ofbiomolecules at high temperatures and its implication for life at 250 °C. Nature 310: 430–432

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J, Ljungdahl LB (1986) The importance of thermophilic bacteria in biotechnology. CRC Crit Rev Biotechnol 3: 39–108

    Article  CAS  Google Scholar 

  • Winter G, Fersht AR (1984) Engineering enzymes. Trends Biotechnol 2: 115–119

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Wütrich K, Roder H, Wagner G (1980) Internal mobility and unfolding of globular proteins. In: Jaenicke R (ed) Protein folding. Elsevier/North Holland Biomedical Press, Amsterdam, pp 549–564

    Google Scholar 

  • Yutani K, Ogasahara K, Sugino Y, Matsushiro A (1977) Effect of single amino acid substitution on stability of conformation of a protein. Nature 267: 274–275

    Article  PubMed  CAS  Google Scholar 

  • Yutani K, Ogasahara K, Aoki K, Kakuno T, Sugino Y (1984) Effect of amino acid residues on conformational stability of eight mutant proteins variously substituted at a unique position of the tryptophan synthase a-subunit. J Biol Chem 259: 14076–14081

    PubMed  CAS  Google Scholar 

  • Yutani K, Ogasahara K, Tsujita T, Sugino Y (1987) Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase alpha subunit. Proc Natl Acad Sci USA 84: 4441–4444

    Article  PubMed  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci USA 82: 3192–3196

    Article  PubMed  CAS  Google Scholar 

  • Zale SE, Klibanov AM (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnol Bioeng 25: 2221–2230

    Article  PubMed  CAS  Google Scholar 

  • Zale SE, Klibanov AM (1986) Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry 25: 5432–5444

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JB (1979) Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Technol 1: 243–252

    Article  CAS  Google Scholar 

  • Zuber H (ed) (1976) Enzymes and proteins from thermophilic microorganisms. Birkhäuser, Basel

    Google Scholar 

  • Zuber H (1981) Structural and functional aspects of enzyme catalysis. In: Eggerer H, Huber R (eds) Structural and functional aspects of enzyme catalysis. Springer, Berlin Heidelberg New York, pp 114–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontana, A. (1991). How Nature Engineers Protein (Thermo) Stability. In: di Prisco, G. (eds) Life Under Extreme Conditions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76056-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76056-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76058-7

  • Online ISBN: 978-3-642-76056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics