Archaebacteria: Lipids, Membrane Structures, and Adaptation to Environmental Stresses

  • M. De Rosa
  • A. Trincone
  • B. Nicolaus
  • A. Gambacorta

Abstract

In the past few years a revolution has occurred in the taxonomy of living organisms. In fact, on the basis of genetic studies and on the acquisition of other general biochemical features, organisms are no longer merely gathered into two groups of eubacteria and eukaryotes, but may be considered to belong to a third line, the archaebacteria (Woese 1987).

Keywords

Glycerol Galactose Diol Monosaccharide Ethanolamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comita PB, Gagosian RB, Pang H, Costello CE (1984) Structural elucidation of a unique macrocyclic membrane lipid from a new extremely thermophilic, deep-sea hydrothermal vent archaebacterium Methanococcus jannaschii. J Biol Chem 259: 15234–15241PubMedGoogle Scholar
  2. De Rosa M, Gambacorta A (1986) Lipid biogenesis in archaebacteria. In: Kandler O, Zillig W (eds) Archaebacteria ‘85. Fischer, Stuttgart, pp 278Google Scholar
  3. De Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27: 153–175PubMedCrossRefGoogle Scholar
  4. De Rosa M, Gambacorta A, Nicolaus B (1980a) Regularity of isoprenoid biosynthesis in the ether lipids of archaebacteria. Phytochemistry 19: 791–793CrossRefGoogle Scholar
  5. De Rosa M, Gambacorta A, Nicolaus B, Sodano S, Bu’ Lock JD (1980b) Structural regularities in tetraether lipids of Caldariella and their biosynthetic and phyletic implications. Phytochemistry 19: 833–836CrossRefGoogle Scholar
  6. De Rosa M, Gambacorta A, Nicolaus B, Sodano S (1982) Incorporation of labelled glycerols into ether lipid in Caldariella acidophila. Phytochemistry 21: 595–599CrossRefGoogle Scholar
  7. De Rosa M, Gambacorta A, Nicolaus B, Chappe B, Albrecht P (1983) Isoprenoid ethers backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta 753: 249–256Google Scholar
  8. De Rosa M, Gambacorta A, Gliozzi A (1986a) Structure, biosynthesis and physicochemical properties of archaebacterial lipids. Microbiol Rev 50: 70–80PubMedGoogle Scholar
  9. De Rosa M, Gambacorta A, Lanzotti V, Trincone A, Harris JE, Grant WD (1986b) A range of ether core lipids from the methanogenic archaebacterium Methanosarcina barkeri. Biochim Biophys Acta 875: 487–492Google Scholar
  10. De Rosa M, Gambacorta A, Trincone A, Basso A, Zillig W, Holz I (1987) Lipids of Thermococcus celer, a sulfur-reducing archaebacterium: structure and biosynthesis. Syst Appl Microbiol 9: 1–5CrossRefGoogle Scholar
  11. De Rosa M, Gambacorta A, Grant WD, Lanzotti V, Nicolaus B (1988) Polar lipids and glycine betaine from haloalkaliphilic archaebacteria. J Gen Microbiol 134: 205–211Google Scholar
  12. De Rosa M, Lanzotti V, Nicolaus B, Trincone A, Gambacorta A (1989) Lipids of archaebacteria: structural and biosynthetic aspects. In: Costa MS, Duarte JC, Williams RAD (eds) The microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London, pp 131Google Scholar
  13. Ekiel I, Mash D, Smallbone BW, Kates M, Smith ICP (1981) The state of the lipids in the purple membrane of Halobacterium cutirubrum as seen by “P NMR. Biochem Biophys Res Commun 100: 105–113PubMedCrossRefGoogle Scholar
  14. Ekiel I, Sprott GD, Smith ICP (1986) Mevalonic acid is partially synthesized from aminoacids in Halobacterium cutirubrum: a ’’C nuclear magnetic resonance study. J Bacteriol 166: 559–564PubMedGoogle Scholar
  15. Ferrante G, Ekiel I, Sprott DJ (1986) Structural characterization of the lipids of Methanococcus voltae including a novel N-acetylglucosamine 1-P diether. J Biol Chem 36: 17062–17066Google Scholar
  16. Ferrante G, Ekiel I, Sprott JD (1987) Structures of diether lipids of Methanospirillum hungatei containing novel head groups N,N-dimethylamino and N,N,N-dimethylaminopentane tetrol. Biochim Biophys Acta 921: 281–291Google Scholar
  17. Ferrante G, Ekiel I, Girischandra BP, Sprott DJ (1988a) A novel core lipid isolated from the aceticlastic methanogen Methanothrix concilii GP6. Biochem Biophys Acta 963: 173–182Google Scholar
  18. Ferrante G, Ekiel I, Girischandra BP, Sprott DJ (1988b) Structure of the major polar lipids isolated from the aceticlastic methanogen, Methanothrix concilii GP6. Biochim Biophys Acta 963: 162–172Google Scholar
  19. Fredrickson HL, Leeuw JW, Tas AC, van der Greef J, Lavos GF, Boon JJ (1989) Fast atom bombardment (tandem) mass spectrometric analysis of intact polar ether lipids extractable from the extremely halophilic archaebacterium Halobacterium cutirubrum. Biomed Mass Spectrom 18: 96–105CrossRefGoogle Scholar
  20. Gliozzi A, Paoli G, De Rosa M, Gambacorta A (1983) Effect ofisoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta 735: 234–242CrossRefGoogle Scholar
  21. Gliozzi A, Bruno S, Basak TK, De Rosa M, Gambacorta A (1986) Organization and dynamics of bipolar lipids from Sulfolobus solfataricus in bulk phases and in monolayer membranes. In: Kandler O, Zillig W (eds) Archaebacteria’ 85. Fischer, Stuttgart, pp 266Google Scholar
  22. Grant WD, Larsen H (1989) Extremely halophilic archaebacteria. In: Staley JT, Bryant MP, Pfennig N, HoltJG (eds) Bergey’s manual of systematic bacteriology, vol 3, Williams and Wilkins, London, pp 2216Google Scholar
  23. Gliozzi A, Bruno S, Basak TK, De Rosa M, Gambacorta A (1986) Organization and dynamics of bipolar lipids from Sulfolobus solfataricus in bulk phases and in monolayer membranes. In: Kandler O, Zillig W (eds) Archaebacteria’ 85. Fischer, Stuttgart, pp 266Google Scholar
  24. Kakinuma K, Yamagishi M, Fujimoto Y, Ikekawa N, Oshima T (1988) Stereochemistry of the biosynthesis of sn-2,3-O-diphytanyl glycerol, membrane lipid of archaebacterium Halobacterium halobium. J Am Chem Soc 110: 4861–4863CrossRefGoogle Scholar
  25. Kamekura M, Kates M (1988) Lipids of halophilic archaebacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol II. CRC Press, Boca Raton, Florida, pp 25Google Scholar
  26. Kates M, Kushwaha SC (1978) Biochemistry of the lipids of extremely halophilic bacteria. In: Caplan SR, Ginzburg M (eds) Energetics and structure of halophilic microorganisms. Elsevier North Holland Biomedical Press, Amsterdam, pp 461Google Scholar
  27. Koga Y, Ohga M, Nishihara M, Morii H (1987) Distribution of a diphytanyl ether analog of phosphatidylserine and an ethanolamine-containing tetraether lipid methanogenic bacteria. Syst Appl Microbiol 9: 176–182CrossRefGoogle Scholar
  28. König H (1988) Archaebacteria. In: Rehm HJ (ed) Biotechnology, vol 6. V erlag Chemie, Basel, pp 697 Kramer JKG, Saver FD, Blackwell BA (1987) Structure of the two new aminophospholipids from Methanobacterium thermoautotrophicum. Biochem J 245: 139–143Google Scholar
  29. Kushwaha SC, Kates M, Sprott JD, Smith ICP (1981) Novel polar lipids from the methanogen Methanospirillum hungatei GPI. Biochim Biophys Acta 664: 156–173PubMedGoogle Scholar
  30. Kushwaha SC, Juez Perez G, Rodriguez-Valera F, Kates M, Kushner DJ (1982) Survey of lipids of new group of extremely halophilic bacteria from salt ponds in Spain. Can J Microbiol 28: 1365–1373CrossRefGoogle Scholar
  31. Langworthy TA (1979) Special features of Thermoplasma. In: Barile MF, Racin R (eds) The mycoplasma. Academic Press, New York, pp 495Google Scholar
  32. Kushwaha SC, Kates M, Sprott JD, Smith ICP (1981) Novel polar lipids from the methanogen Methanospirillum hungatei GPI. Biochim Biophys Acta 664: 156–173Google Scholar
  33. Langworthy TA, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. In: Kandler O, Zillig W (eds) Archaebacteria ‘85. Gustav Fischer, Stuttgart, pp 253Google Scholar
  34. Lanzotti V, De Rosa M, Trincone A, Basso A, Gambacorta A, Zillig W (1987) Complex lipids from Desulfurococcus mobilis, a sulfur reducing archaebacterium. Biochim Biophys Acta 922: 95–102Google Scholar
  35. Lanzotti V, Nicolaus B, Trincone A, De Rosa M, Grant WD, Gambacorta A (1989a) A complex lipids with a cyclic phosphate from the archaebacterium Natronococcus occultus. Biochim Biophys Acta 1001: 31–34Google Scholar
  36. Lanzotti V, Trincone A, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989b) Complex lipids of Pyrococcus and AN 1, thermophilic members of archaebacteria belonging to Thermococcales. Biochim Biophys Acta 1004: 44–48Google Scholar
  37. Lanzotti V, Nicolaus B, Trincone A, De Rosa M, Grant WD, Gambacorta A (1989c) An isopranoid ether analogue of phosphatidic acid from a halophilic archaebacteria. Biochim Biophys Acta 1002: 398–400Google Scholar
  38. Luzzati V, Gambacorta A, De Rosa M, Gulik A (1987) Polar lipid of thermophilic prokaryotic organisms chemical and physical structure. In: Engelman DM, Rantez CR, Pollard TD (eds) Annual review of biophysics and biophysical chemistry 16. Annual Review Inc, Palo Alto, CA, p 25Google Scholar
  39. Moldoveanu N, Kates M (1988) Biosynthetic studies of the polar lipids of Halobacterium cutirubrum formation of isoprenyl ether intermediates. Biochim Biophys Acta 960: 164–182Google Scholar
  40. Morii H, Nishihara M, Ohga M, Koga Y (1986) A diphytanyl ether analog of phosphatidyl serine from methanogenic bacterium, Methanobrevibacter arboriphilus. J Lipid Res 27: 724–730PubMedGoogle Scholar
  41. Nicolaus B, Lanzotti V, Trincone A, De Rosa M, Grant WD, Gambacorta A (1989) Glycine-betaine and polar lipid composition in halophilic archaebacteria in response to growth in different salt concentration. FEMS Microbiol Lett 59: 157–160CrossRefGoogle Scholar
  42. Nishihara M, Koga Y (1987) Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J Biochem 101: 997–1009PubMedGoogle Scholar
  43. Nishihara M, Morii H, Koga Y (1989) Heptads of polar ether lipids of an archaebacterium Methanobacterium thermoautotrophicum: structure and biosynthetic relationship. Biochemistry 28: 95–102CrossRefGoogle Scholar
  44. Paltauf F (1983) Ether lipids in biological and model membranes. In: Mangold HK, Paltauf F (eds )Google Scholar
  45. Ether lipids: biochemical and biomedical aspects. Academic Press, New York, pp 309Google Scholar
  46. Poulter CD, Aoki T, Daniels L (1988) Biosynthesis of isoprenoid membranes in the methanogenic archaebacterium Methanospirillum hungatei. J Am Chem Soc 110: 2620–2624CrossRefGoogle Scholar
  47. Thurl S, Schafer W (1988) Lipids from the sulfur dependent archaebacterium Thermoproteus tenax. Biochim Biophys Acta 961: 233–238Google Scholar
  48. Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8: 89–99CrossRefGoogle Scholar
  49. Trincone A, Gambacorta A, De Rosa M, Scolastico C, Sydimov A, Potenza D (1989a) Mechanism of cyclopentane ring formation in tetraether lipids of Sulfolobussolfataricus. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and the potential for biotechnology. Elsevier Applied Science, London, pp 180Google Scholar
  50. Trincone A, Lanzotti V, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989b) Comparative lipid composition of aerobically and anaerobically grown Desulfurolobus ambivalens an autotrophic thermophilic archaebacterium. J Gen Microbiol 135: 2751–2757Google Scholar
  51. Taujimoto K, Yorimitsu S, Takahasi T, Ohashi M (1989) Revised structure of a phospholipid obtained from Halobacterium halobium. Chem Commun 668–670Google Scholar
  52. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. De Rosa
    • 1
    • 2
  • A. Trincone
    • 1
  • B. Nicolaus
    • 1
  • A. Gambacorta
    • 1
  1. 1.Istituto per la Chimica di Molecole di Interesse Biologico CNRArco Felice, NapoliItaly
  2. 2.Istituto di Biochimica delle MacromolecoleUniversita’ di Napoli I, Facolta’ di MedicinaNapoliItaly

Personalised recommendations