Skip to main content

Cold-Stable Microtubules from Antarctic Fish

  • Conference paper
  • 102 Accesses

Abstract

The cytoplasmic microtubules of eukaryotic cells participate in many fundamental processes, including mitosis, nerve growth and regeneration, the determination of cell shape, and the transport of organelles within cells (Dustin 1984). The assembly of microtubules from their major subunit proteins, tubulin αβ-dimers and microtubule-associated proteins (MAPs), is an entropically driven reaction favored by high temperatures and mediated by the release of structured water from sites of interdimer contact (Correia and Williams 1983). Thus, the microtubule proteins of homeotherms (e.g., mammals and birds) form micro-tubules at temperatures near 37 °C, and these “cold-labile” polymers disassemble at low temperatures (0–4 °C). By contrast, the microtubules of cold-living poikilotherms, such as those found in the Antarctic marine ecosystem, must assemble and function at temperatures as low as −1.9 °C. However, relatively little is known regarding the polymerization of microtubule proteins from organisms adapted to low body temperatures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharyya B, Sackett DL, Wolff J (1985) Tubulin, hybrid dimers, and tubulin S: stepwise charge reduction and polymerization. J Biol Chem 260: 10208–10216

    PubMed  CAS  Google Scholar 

  • Breitling F, Little M (1986) Carboxy-terminal regions on the surface of tubulin and microtubules: epitope locations of YOL1/34, DM1A and DM1B. J Mol Biol 189: 367–370

    Article  PubMed  CAS  Google Scholar 

  • Correia JJ, Williams RC Jr (1983) Mechanisms of assembly and disassembly of microtubules. Annu Rev Biophys Bioeng 12: 211–235

    Article  PubMed  CAS  Google Scholar 

  • Crestfield AM, Moore S, Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and 5-carboxymethylated proteins. J Biol Chem 238: 622–627

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Overton SA (1986) Heterogeneity and structure of brain tubulins from cold-adapted Antarctic fishes: comparison to brain tubulins from a temperate fish and a mammal. J Biol Chem 261: 10922–10930

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Overton SA (1988) Antarctic fish tubulins: heterogeneity, structure, amino acid compositions, and charge. Comp Biochem Physiol 90B: 593–600

    Article  Google Scholar 

  • Detrich HW III, Wilson L (1983) Purification, characterization, and assembly properties of tubulin from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus. Biochemistry 22: 2453–2462

    Article  PubMed  CAS  Google Scholar 

  • Detrich HW III, Jordan MA, Wilson L, Williams RC Jr (1985) Mechanism of microtubule assembly: changes in polymer structure and organization during assembly of sea urchin egg tubulin. J Biol Chem 260: 9479–9490

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Prasad V, Luduena RF (1987) Cold-stable microtubules from Antarctic fishes contain unique a-tubulins. J Biol Chem 262: 8360–8366

    PubMed  CAS  Google Scholar 

  • Detrich HW III, Johnson KA, Marchese-Ragona SP (1989) Polymerization ofjakntarctic fish tubulins at low temperatures: energetic aspects. Biochemistry 28: 10085–10093

    Article  PubMed  CAS  Google Scholar 

  • DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic map folio series, folio 15. American Geographical Society, New York, pp 1–10

    Google Scholar 

  • Dustin P (1984) Microtubules, 2nd edn. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Gaskin F, Cantor CR, Shelanski ML (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89: 737–758

    Article  PubMed  CAS  Google Scholar 

  • Gross E (1967) The cyanogen bromide reaction. Methods Enzymol 11: 238–255

    Article  CAS  Google Scholar 

  • Herzog W, Weber K (1977) In vitro assembly of pure tubulin into microtubules in the absence of microtubule-associated proteins and glycerol. Proc Natl Acad Sci USA 74: 1860–1864

    Article  PubMed  CAS  Google Scholar 

  • Himes RH, Detrich HW III (1989) Dynamics of Antarctic fish microtubules at low temperatures. Biochemistry 28: 5089–5095

    Article  PubMed  CAS  Google Scholar 

  • Himes RH, Burton PR, Gaito JM (1977) Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins. J Biol Chem 252: 6222–6228

    PubMed  CAS  Google Scholar 

  • Johnson KA, Borisy GG (1975) The equilibrium assembly of microtubules in vitro. In: Inoue’ S, Stephens RE (eds) Molecules and cell movement. Raven, New York, pp 119–139

    Google Scholar 

  • Kirchner K, Mandelkow E-M (1985) Tubulin domains responsible for assembly of dimers and protofilaments. EMBO J 4: 2397–2402

    PubMed  CAS  Google Scholar 

  • Lee JC, Timasheff SN (1975) The reconstitution of microtubules from purified calf brain tubulin. Biochemistry 14: 5183–5187

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Timasheff SN (1977) In vitro reconstitution of calf brain microtubules: effects of solution variables. Biochemistry 16: 1754–1764

    Article  PubMed  CAS  Google Scholar 

  • Lowry JK (1975) Soft bottom macrobenthic community of Arthur Harbor, Antarctica. In: Pawson DL (ed) Biology of the Antarctic seas V, Antarctic Research Series 23. American Geophysical Union, Washington, pp 1–19

    Chapter  Google Scholar 

  • Mandelkow E-M, Herrmann M, Rühl U (1985) Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J Mol Biol 185: 311–327

    Article  PubMed  CAS  Google Scholar 

  • Olmsted JB, Borisy GG (1975) Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry 14: 2996–3005

    Article  PubMed  CAS  Google Scholar 

  • Roach MC, Luduena RF (1984) Different effects of tubulin ligands on the intrachain cross-linking of ß,-tubulin. J Biol Chem 259: 12063–12071

    PubMed  CAS  Google Scholar 

  • Robinson J, Engelborghs Y (1982) Tubulin polymerization in dimethyl sulfoxide. J Biol Chem 257: 5367–5371

    PubMed  CAS  Google Scholar 

  • Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20: 3096–3102

    Article  PubMed  CAS  Google Scholar 

  • Sackett DL, Wolff J (1986) Proteolysis of tubulin and the substructure of the tubulin dimer. J Biol Chem 261:9070–9076

    Google Scholar 

  • Sackett DL, Bhattacharyya B, Wolff J (1985) Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem 260: 43–45

    PubMed  CAS  Google Scholar 

  • Serrano L, Avila J (1985) The interaction between subunits in the tubulin dimer. Biochem J 230: 551–556

    PubMed  CAS  Google Scholar 

  • Serrano L, de la Torre J, Maccioni RB, Avila J (1984) Involvement of the carboxy-terminal domain of tubulin in the regulation of its assembly. Proc Natl Acad Sci USA 81: 5989–5993

    Article  PubMed  CAS  Google Scholar 

  • Suprenant KA, Rubhun LI (1983) Assembly of unfertilized sea urchin egg tubulin at physiological temperatures. J Biol Chem 258: 4518–4525

    PubMed  CAS  Google Scholar 

  • Suprenant KA, Rubhun LI (1984) Purification and characterization of oocyte cytoplasmic tubulin and meiotic spindle tubulin of the surf clam, Spisula solidissima. J Cell Biol 98: 253–266

    Article  PubMed  CAS  Google Scholar 

  • de la Vina S, Andreu D, Medrano FJ, Nieto JM, Andreu JM (1988) Tubulin structure probed with antibodies to synthetic peptides. Mapping of three major types of limited proteolysis fragments. Biochemistry 27: 5352–5365

    Article  PubMed  Google Scholar 

  • Williams RC Jr, Correia JJ, DeVries AL (1985) Formation of microtubules at low temperatures by tubulin from Antarctic fish. Biochemistry 24: 2790–2798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Detrich, H.W. (1991). Cold-Stable Microtubules from Antarctic Fish. In: di Prisco, G. (eds) Life Under Extreme Conditions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76056-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76056-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76058-7

  • Online ISBN: 978-3-642-76056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics