On the Role of Virasoro, Kac-Moody Algebra and Conformal Invariance in Soliton Hierarchies

  • A. Roy Chowdhury
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


The implications of infinite dimensional Lie algebra, Virasoro and Kac-Moody algebras in the study of completely integrable partial differential equations, are reviewed. Intimate relations are shown to exist between prolongation algebra, Lie-Bäcklund algebra and such infinite dimensional algebras. The importance of conformal invariance is emphasized and some new aspects of complete integrability are exhibited. Lastly the relation between bi-Hamiltonian structure and conformal invariance is explained.


Conformal Invariance Hamiltonian Structure Backlund Transformation Soliton Hierarchy Integrable Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. K. Bullough and P. J. Caudrey, eds., Solitons, Current Topics in Physics (Springer-Verlag, Berlin, New York, 1981); M. Lakshmanan, ed., Solitons: Introduction and Applications ( Springer-Verlag, Heidelberg, 1987 ).Google Scholar
  2. [2]
    M. J. Ablowitz, A. Ramani, H. Segur, Lett. Nuovo Cimento 23 (1978) 333; J. Math. Phys. 21 (1980) 715, 1006; J. Weiss, J. Math. Phys. 24 (1983) 1405; 25 (1984) 13; A. Roy Chowdhury and P. K. Chanda, J. Math. Phys. 27 (1987) 707; P. K. Chanda and A. Roy Chowdhury, J. Math. Phys. 29 (1988) 843; R. Sahadevan and M. Lakshmanan, Phys. Rev. A31 (1985) 861; Phys. Lett. 301A (1984) 189.MathSciNetCrossRefGoogle Scholar
  3. [3]
    G. L. Lamb, Jr., Elements of Soliton Theory ( John Wiley, New York, 1980 ).MATHGoogle Scholar
  4. [4]
    D. Sattinger, Stud. Appl Math. 72 (1983) 65;S,Olefsson, J. Phys. A22 (1989) 157; A. Roy Chowdhury and S. Roy, J. Math. Phys. 27 (1986) 2464.MathSciNetGoogle Scholar
  5. [5]
    P. Goddard and E. Olive, Int. J. Mod. Phys. A1 (1986) 303; V. Kac, Infinite Dimensional Lie Algebra ( Birkhauser, Boston, 1983 ).MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 16 (1975) 1.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    C. Hoenselares, Prog. Theo. Phys. 74 (1985) 645.ADSCrossRefGoogle Scholar
  8. [8]
    F. B. Estabrook and H. D. Wahlquist, J. Math. Phys. 17 (1976) 1293.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    H. N. Van Eck, Proc. Netherland Acad. Sci. A86 (1983) 149.Google Scholar
  10. [10]
    S. Roy and A. Roy Chowdhury, Int. J. Theo. Phys. 28 (1989) 845.MATHCrossRefGoogle Scholar
  11. [11]
    G. Bhattacharya and H. Bohr, ICTP Preprint 81/82 (13).Google Scholar
  12. [12]
    L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Soliton ( Springer-Verlag, Berlin, 1988 ).Google Scholar
  13. [13]
    H. Eichenherr, CERN Preprint, TH 3491.Google Scholar
  14. [14]
    K. Ueno and Y. Nakamura, Phys. Lett. 109B (1982) 273.MathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Mikailov, Physica 3D (1981) 73.Google Scholar
  16. [16]
    H. Bohr and A. Roy Chowdhury, J. Phys. A18 (1985) 3423.MathSciNetADSMATHGoogle Scholar
  17. [17]
    J. L. Gervais, Phys. Lett. 1608 (1985) 277; J. L. Gervais and A. Neveu, Nucl. Phys. B209 (1982) 125.MathSciNetGoogle Scholar
  18. [18]
    C. A. Laberge and P. Matheiu, Phys. Lett. B215 (1988) 718; P. Matheiu, J. Math. Phys. 29 (1988) 2499.MathSciNetCrossRefGoogle Scholar
  19. [19]
    T. Bakas, Nucl. Phys. B302 (1988) 189; E. Witten, Comm. Math. Phys. 114 (1988) 1;MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. Roy Chowdhury
    • 1
  1. 1.High Energy Physics Division, Department of PhysicsJadavpur UniversityCalcuttaIndia

Personalised recommendations