Skip to main content

Photonic Switching Fabrics Based on S-SEED Arrays

  • Conference paper
Photonic Switching II

Abstract

This paper will review the hardware required for photonic switching fabrics based on S-SEED arrays and free-space digital optics. These fabrics are based on diffraction limited optics, regenerative digital logic devices, differential digital signals, 2-D pixelated images, a fan-in and fan-out of two, and single wavelength operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Hinton, “Architectural Considerations for Photonic Switching Networks,” Journal of Selected Areas of Communications, Vol. 6, pp. 1209–1226, August 1988.

    Article  Google Scholar 

  2. H. S. Hinton, “Relationship between the hardware required for photonic switching and optical computing based on free-space digital optics,” OSA Proceedings on Photonic Switching, J. E. Midwinter and H. S. Hinton, eds. (Optical Society of America, Washington, D. C., 1989), Vol. 3, pp. 184–191.

    Google Scholar 

  3. A. L. Lentine et al. “Symmetric self-electro-optic effect device: Optical set-reset latch, differential logic gate, and differential modulator/detector” IEEE Journal of Quantum Electronics, Vol. 25, No. 8, pp. 1928–1936, August, 1989.

    Article  ADS  Google Scholar 

  4. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Optics Communications, Vol. 3, No. 5, July 1971, pp. 312–315.

    Article  ADS  Google Scholar 

  5. H. Dammann and E. Klotz, “Coherent optical generation and inspection of two- dimensional periodic structures,” Optica Acta, Vol. 24, No. 4, 1977, pp. 505–515.

    Article  ADS  Google Scholar 

  6. U. Killat, G. Rabe, and W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fiber and Integrated Optics, Vol. 4, No. 2, 1982, pp. 159–167.

    Article  Google Scholar 

  7. J. Jahns, N. Streibl, and S. J. Walker, “Multilevel phase structures for arrays generation,” OE/LASE’89, Los Angeles, CA, 1989.

    Google Scholar 

  8. J. Jahns and M. J. Murdocca, “Crossover Networks and their Optical Implementation,” Applied Optics, Vol. 27, pp. 3155–3160, August 1, 1988.

    Article  ADS  Google Scholar 

  9. T. J. Cloonan, “Topological equivalence of optical crossover networks and modified data manipulator networks,” Applied Optics, Vol. 28, No. 13, 1 July 1989, pp 2494–2498.

    Article  ADS  Google Scholar 

  10. T. J. Cloonan et al. “An all-optical implementation of a 3-D crossover switching network,” To be published in IEEE Photonics Technology Letters.

    Google Scholar 

  11. M. E. Prise et al. “Design of an optical computer,” Journal de Physique, Colloque C2, Supplement au n°6, Tome 49, juin 1988.

    Google Scholar 

  12. F. B. McCormick and M. E. Prise, “Optical circuitry for free-space interconnections,” Applied Optics, Vol. 29, May 1988.

    Google Scholar 

  13. F. B. McCormick et al. To be published at CLEO’90.

    Google Scholar 

  14. D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Transactions on Computers, Vol. C-24, No. 12, December 1975, pp. 1145–1155.

    Article  MathSciNet  Google Scholar 

  15. C. Wu and T. Feng, “On a Class of Multistage Interconnection Networks,” IEEE Trans. Computers, Vol. 29, No. 8, Aug. 1980, pp. 694–702.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. P. Ofman, “A universal automaton,” Trans. Moscow Math Soc., Vol. 14, 1965 (translation published by Amer. Math Soc., Providence, RI, 1967, pp. 200–215).

    Google Scholar 

  17. C.-T. Lea, “Bipartite graph design principle for photonic switching systems,” IEEE Transactions on Communications, April 1990.

    Google Scholar 

  18. E. Kerbis et al. “An all-optical realization of a 2 x 1 free-space switching node,” Submitted to IEEE Photonics Technology Letters,

    Google Scholar 

  19. T. J. Cloonan et al. “A 3-D crossover switching network based on S-SEED arrays,” Proceedings of 1990 Topical Meeting on Photonic Switching, Kobe, Japan, April 12–14, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinton, H.S., McCormick, F.B., Cloonan, T.J., Tooley, F.A.P., Lentine, A.L., Hinterlong, S.J. (1990). Photonic Switching Fabrics Based on S-SEED Arrays. In: Tada, K., Hinton, H.S. (eds) Photonic Switching II. Springer Series in Electronics and Photonics, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76023-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76023-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76025-9

  • Online ISBN: 978-3-642-76023-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics