Top-Surface-Emitting GaAs Four-Quantum-Well Lasers Emitting at 0.85 µm

  • Y. H. Leel
  • B. Tell
  • K. Brown-Goebeler
  • J. L. Jewell
  • J. M. V. Hove
Conference paper
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 29)


Room-temperature CW and pulsed lasing of top-surface-emitting, vertical-cavity, self-aligned, GaAs quantum-well lasers is achieved at ~845 nm. The active gain medium is four 100-Å-thick GaAs quantum wells. The whole structure is grown by molecular beam epitaxy. Deep H+-ion implantation followed by annealing is used to control a vertical profile of resistivity for an efficient current injection at the active region. The threshold current is 2.2 mA for CW and pulsed operation using 10-jam diameter lasers. Differential quantum efficiency is about 20%. Minimum threshold current density per quantum well of 360 A/cm2 is obtained. Maximum CW output power better than 1.5 mW is obtained.


Molecular Beam Epitaxy GaAs Substrate Threshold Current Density Diameter Laser Differential Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Iga, S. Kinoshita, and F. Koyama, Electron. Lett. 23, 134 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    A. Ibaraki, K. Kawashima, K. Furusawa, T. Ishikawa, T. Yamaguchi, and T. Niina, Jpn. J. Appl. Phys. 28, L667 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, Electron. Lett. 25, 1123 (1989)CrossRefGoogle Scholar
  4. 4.
    D. Botez, L. M. Zinkiewicz, T. J. Roth, L. J. Mawst, and G. Perterson, IEEE Photon. Technol. Lett. 1, 205 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    Y.H. Lee, J.L. Jewell, A. Scherer, S. L. McCall, J.P. Harbison, and L. T. Florez, Electron. Lett. 25, 1377 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    K. Tai, R. J. Fisher, K. W. Wang, S.N.G. Chu, and A.Y. Cho, Electron. Lett. 24, 1644 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, N. A. Olsson, J. P. Harbison, and L. T. Florez, Optic. Engin 29, 210 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    M. Orenstein, A. C. Von Lehman, C. Chang-Hasnain, N. Stoeffel, L. T. Florez, J. Harbison, and E. M. Clausen, Technical Digest of Optical Society of America, Orlando, Florida, Oct. 1989, paper PD-22.Google Scholar
  9. 9.
    Y.H. Lee, J.L. Jewell, B. Tell, K. F. Brown-Goebeler, J.P. Harbison, and L. T. Florez, Electron. Lett. 26, 225 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    K. Y. Lau, P.L. Derry, A. Yariv, Appl. Phys. Lett. 52, 88 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Y. H. Leel
    • 1
  • B. Tell
    • 1
  • K. Brown-Goebeler
    • 1
  • J. L. Jewell
    • 1
  • J. M. V. Hove
    • 2
  1. 1.AT&T Bell LaboratoriesHolmdelUSA
  2. 2.APA Optics, Inc.BlaineUSA

Personalised recommendations