Skip to main content

Geometrical Quasiparticle Condensation Model of Melting in Two Dimensions

  • Conference paper
Dynamics and Patterns in Complex Fluids

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 52))

Abstract

In this paper we describe a new model of the two-dimensional (2D) melting transition, motivated by the recent observation of Glaser and Clark that the structure of a 2D simple dense liquid can be characterized as a random square-triangle tiling containing numerous low-strength tiling faults. The model is based on the assumption that melting is associated with the proliferation and condensation of geometrical quasiparticles, which in 2D are local, nontopological fluctuations from the triangular crystal lattice to the square lattice. The quasiparticles interact via strong, highly anisotropic, short-ranged interactions that produce the characteristic tiling structure of the 2D liquid. This model is derived from and illustrated by molecular dynamics simulation studies of 2D liquid structure, and quantified using a lattice representation that embodies its essential features. The model exhibits a first-order transition for sufficiently strong quasiparticle interactions, and accounts for the volume change associated with melting in a straightforward way. However, there is no phase transition as a function of temperature for the choice of quasiparticle interactions that most accurately reproduces the local geometry of the 2D liquid, suggesting that the contribution of topological defects to the thermodynamics of the melting transition cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  2. Work on 2D melting has been recently reviewed by K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988) and

    Article  ADS  Google Scholar 

  3. by H. Kleinert, Gauge Fields in Condensed Matter (World Scientific, 1989).

    Google Scholar 

  4. M. A. Glaser and N. A. Clark, to appear in Phys. Rev. A, Rapid Comm.

    Google Scholar 

  5. R. Collins, Proc. Phys. Soc. 83, 553 (1964).

    Article  ADS  Google Scholar 

  6. H. Kawamura, Prog. Theor. Phys. 70, 352 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  7. Y. M. Yi and Z. C. Guo, J. Phys.: Condens. Matter 1, 1731 (1989).

    Article  ADS  Google Scholar 

  8. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  ADS  Google Scholar 

  9. Unless otherwise noted, all quantities are expressed in LJ units [7], in which the LJ ε is the unit of energy, the LJ σ is the unit of length, and the particle mass m is the unit of mass.

    Google Scholar 

  10. G. F. Voronoi, J. Reine. Agnew. Math. 134, 198 (1908).

    Article  MATH  Google Scholar 

  11. H. Chen, D. X. Li, and K. H. Kuo, Phys. Rev. Lett. 60, 1645 (1988).

    Article  ADS  Google Scholar 

  12. P. W. Leung, C. L. Henley, and G. V. Chester, Phys. Rev. B 39, 446 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  13. Q. B. Yang and W. D. Wei, Phys. Rev. Lett. 58, 1020 (1987).

    Article  ADS  Google Scholar 

  14. K. H. Kuo, Y. C. Feng, and H. Chen, Phys. Rev. Lett. 61, 1740 (1988).

    Article  ADS  Google Scholar 

  15. We first compute the sum Σ of “nominal” bond angles around a vertex (a triangle contributes 60° and a “square” 90°). The strength of a disclination is then given by n = (σ-360°)/30°. ST-allowed vertices are those having n = 0.

    Google Scholar 

  16. M. A. Glaser and N. A. Clark, to be published.

    Google Scholar 

  17. F. C. Frank and J. S. Kasper, Acta Cryst. 12, 483 (1959).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glaser, M.A., Clark, N.A., Armstrong, A.J., Beale, P.D. (1990). Geometrical Quasiparticle Condensation Model of Melting in Two Dimensions. In: Onuki, A., Kawasaki, K. (eds) Dynamics and Patterns in Complex Fluids. Springer Proceedings in Physics, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76008-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76008-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76010-5

  • Online ISBN: 978-3-642-76008-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics