Experimental Studies of Phase Transitions and Pattern Formation in Two Dimensions

  • C. M. Knobler
  • K. Stine
  • B. G. Moore
Part of the Springer Proceedings in Physics book series (SPPHY, volume 52)


The technique of fluorescence microscopy has been utilized in studies of the equilibrium phase behavior and the kinetics of phase transitions and pattern formation in monolayers at the air/water interface. A brief description of the equilibrium phase diagram of fatty acid monolayers is presented and quantitative studies of the evolution of two-dimensional gas-liquid foam structures in such systems are reported. Shape instabilities observed in monolayers of esters are described qualitatively.


Equilibrium Phase Diagram Line Tension Tricritical Point Foam Structure Coexistence Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1982), 4th ed.Google Scholar
  2. 2.
    G. L. Gaines, Jr., Insoluble Monolayers at Liquid-Gas Interfaces (Interscience, New York, 1966).Google Scholar
  3. 3.
    C. M. Knobler, Adv. Chem. Phys. 77, in press.Google Scholar
  4. 4.
    N. R. Pallas and B. A. Pethica, Langmuir 1, 509 (1985).CrossRefGoogle Scholar
  5. 5.
    V. von Tscharner and H. M. McConnell, Biophys. J. 36, 409 (1981).CrossRefGoogle Scholar
  6. 6.
    M. Lösche and H. Möhwald, Rev. Sci. Instr. 55, 1968 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    B. Moore, C. M. Knobler, D. Broseta, and F. Rondelez, J. Chem. Soc. Faraday Trans. II 82, 1753 (1986).CrossRefGoogle Scholar
  8. 8.
    B. G. Moore, C. M. Knobler, S. Akamatsu, and F. Rondelez, submitted to J. Phys.Chem.Google Scholar
  9. 9.
    K. J. Stine, S. A. Rauseo, B. G. Moore, J. A. Wise, and C. M. Knobler, in preparation.Google Scholar
  10. 10.
    S. Akamatsu and F. Rondelez, personal communication.Google Scholar
  11. 11.
    See, for example, H. M. McConnell and V. T. Moy, J. Phys. Chem. 92, 4520 (1988).CrossRefGoogle Scholar
  12. 12.
    D. Weaire and N. Rivier, Contemp. Phys. 25, 59 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    D. Weaire and J. P. Kermode, Phil. Mag. B 50, 379 (1984).CrossRefGoogle Scholar
  14. 14.
    D. J. Srolovitz, M. P. Anderson, G. S. Grest, and P. Sahni, Scripta Met. 17, 241 (1983).CrossRefGoogle Scholar
  15. 15.
    J. A. Glazier, S. P. Gross, and J. Stavans, Phys. Rev. A 36, 306 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    D. A. Aboav, Metallography 13, 43 (1980).CrossRefGoogle Scholar
  17. 17.
    C. J. Lambert and D. L. Weaire, Metallography 14, 307 (1981).CrossRefGoogle Scholar
  18. 18.
    See, for example, K. Nakashima, T. Nagai, and K. Kawasaki, J. Stat. Phys., in press.Google Scholar
  19. 19.
    N. Rivier, Phil. Mag. B 52, 795 (1985).CrossRefGoogle Scholar
  20. 20.
    W. M. Heckl and H. Möhwald, Ber. Bunsenges. Phys. Chem. 90, 1159 (1986).Google Scholar
  21. 21.
    K. A. Suresh, J. Nittman, and F. Rondelez, Europhys. Lett. 6, 437 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    B. G. Moore, Ph.D. dissertation, UCLA, 1989.Google Scholar
  23. 23.
    D. Andelman, F. Brochard, and J.-F. Joanny, J. Chem. Phys. 86, 3673 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    K. Stine and C. M. Knobler, unpublished.Google Scholar
  25. 25.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1970), 2nd ed., p. 97.Google Scholar
  26. 26.
    C. Rottman and M. Wortis, Phys. Rep. 103, 59 (1984).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • C. M. Knobler
    • 1
  • K. Stine
    • 1
  • B. G. Moore
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations