Wavelets pp 38-66 | Cite as

Orthonormal Bases of Wavelets with Finite Support — Connection with Discrete Filters

  • I. Daubechies
Part of the inverse problems and theoretical imaging book series (IPTI)


We define wavelets and the wavelet transform. After discussing their basic properties, we focus on orthonormal bases of wavelets, in particular bases of wavelets with finite support.


Orthonormal Base Singular Integral Operator Multiresolution Analysis Tight Frame Piecewise Constant Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. J. Morlet, G. Arens, I. Fourgeau and D. Giard, “Wave propagation and sampling theory,” Geophysics 47 (1982) 203–236.CrossRefADSGoogle Scholar
  2. 2.
    A. Grossman and J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape”, SIAM J. Math. Anal 15 (1984) 723–736. P. Goupillaud, A. Grossmann and J. Morlet, “Cycle-octave and related transforms in seismic signal analysis”, Geoexploration 23 (1984) 85.CrossRefMathSciNetGoogle Scholar
  3. 3.
    The wavelet transform is implicitly used in A. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math. 24 (1964) 113–190. It appears more explicitly in e.g. A. Calderón and A. Torchinsky, “Parabolic maximal functions associated to a distribution, I”, Adv. Math. 16 (1975) 1–64.Google Scholar
  4. 4.
    An application to a singular integral operator relevant for quantum mechanics can be found in C. Fefferman and R. de la Llave, “Relativistic stability of matter,” Rev. Mat. Iberoamericana 2 (1986).Google Scholar
  5. 5.
    J. R. Klauder and B.-S. Skagerstam, “Coherent States”, World Scientific (Singapore ) 1985.MATHGoogle Scholar
  6. 6.
    E. W. Aslaksen and J. R. Klauder, “Unitary representations of the affine group,” J. Math. Phys. 9 (1968) 206–211; “Continuous representation theory using the affine group”, J. Math. Phys. 10 (1969) 2267–2275.CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    T. Paul, “Affine coherent states and the radial Schrodinger equation I. Radial harmonic oscillator and the hydrogen atom”, to be published.Google Scholar
  8. 8.
    K. G. Wilson and J. B. Kogut, Physics Reports 12C (1974) 77. J. Glimm and A. Jaffe, “Quantum physics: a functional integral point of view”, Springer (New York) 1981.CrossRefADSGoogle Scholar
  9. 9.
    G. Battle and P. Federbush, “Ondelettes and phase cell cluster expansions: a vindication”, Comm. Math. Phys. 109 (1987) 417–419.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    I. Daubechies, “The wavelet transform, time-frequency localisation and signal analysis”, to be published in IEEE Trans. Inf. Theory.Google Scholar
  11. 11.
    R. Balian, “Un principe d’incertitude fort en théorie du signal ou en mécanique quantique”, C. R. Acad. Sc. Paris 292, se’rie 2 (1981) 1357–1362.MathSciNetGoogle Scholar
  12. 12.
    F. Low, “Complex sets of wave-packets” in “A passion for physics — Essays in honor of G. Chew”, World Scientific (Singapore) 1985, pp. 17–22.Google Scholar
  13. 13.
    G. Battle, “Heisenberg proof of the Balian-Low theorem”, to be published in Lett. Math.Phys.Google Scholar
  14. 14.
    D. Gabor, “Theory of communication”, J. Inst. Elee. Eng. (London) 93 III (1946) 429–457.Google Scholar
  15. 15.
    M. J. Bastiaans, “A sampling theorem for the complex spectrogram and Gabor’s expansion of a signal in Gaussian elementary signals”, Optical Eng. 20 (1981) 594–598.Google Scholar
  16. 16.
    A.J.E. M. Janssen, “Gabor representation of generalized functions,” J. Math. Appi. 80 (1981) 377–394.CrossRefGoogle Scholar
  17. 17.
    Y. Meyer, “Principe d’incertitde, bases hilbertiennes et algèbres d’opérateurs”, Séminaire Bourbaki, 1985–1986, nr.662.Google Scholar
  18. 18.
    P. G. Lemarié and Y. Meyer, “Ondelettes et bases hilbertiennes”, Rev. Mat. Iberoamericana 2 (1986) 1–18.MathSciNetGoogle Scholar
  19. 19.
    G. Battle, “A block spin construction of ondelettes. I: Lemarié functions,” Comm. Math. Phys. 110 (1987) 601–615.CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    P. Lemarié, “Ondelettes à localisation exponentielle”, to be published in J. de Math. Pures et Appi.Google Scholar
  21. 21.
    S. Mallat, “Multiresolution approximation and wavelets”, to be published.Google Scholar
  22. 22.
    S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation”, to be published in IEEE Trans, on Pattern Analysis and Machine Intelligence.Google Scholar
  23. 23.
    P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code”, IEEE Trans. Comm. 31 (1983) 582–540, and “A multiresolution spline with application to image mosaics”, ACM Trans, on Graphics, 2 (1983) 217–236.CrossRefGoogle Scholar
  24. 24.
    I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure & Appi. Math. 49 (1988) 909–996.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Y. Meyer, “Ondelettes et fonctions splines”, Séminaire E.D.P., Ecole Polytechnique, Paris, France, December 86.Google Scholar
  26. 26.
    M. J. Smith and D. P. Barnwell, “Exact reconstruction techniques for tree-structured subband coders”, IEEE Trans, on ASSP 34 (1986) 434–441.CrossRefGoogle Scholar
  27. 27.
    D. Esteban and C. Galand, “Application of quadrature minor filters to split band voice coding schemes”, Proc. Int. Conf. ASSP (1977) 191–195.Google Scholar
  28. 28.
    G. Polya and G. Szego, “Aufgaben und Lehrsatse aus der Analysis” Vol. II, Springer (Berlin ) 1971.CrossRefGoogle Scholar
  29. 30.a.
    I. Daubechies and J. Lagarias, “Two-scale difference equations: I. Global regularity of solutions”, preprint AT&T Bell Laboratories.Google Scholar
  30. 30.b.
    I. Daubechies and J. Lagarias, “Two-scale difference equations: II Infinite products of matrices, local regularity and fractals.”, preprint AT&T Bell Laboratories.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • I. Daubechies
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations