Wavelets pp 221-231 | Cite as

Poincaré Coherent States and Relativistic Phase Space Analysis

  • J.-P. Antoine
Conference paper
Part of the inverse problems and theoretical imaging book series (IPTI)


Group theory is one of the cornerstones of wavelet analysis. Indeed, at a very general level, one may say that the following three concepts are equivalent: (i) a square integrable representation U of a group G; (ii) coherent states over G; (iii) the wavelet transform associated to U.This analysis is familiar in the two standard cases [1], which have been thoroughly discussed during this colloquium:
  1. (i)

    the affine (ax+b) group, which yields the usual wavelet analysis;

  2. (ii)

    the Weyl-Heisenberg group, which leads to various phase space or time- frequency representations.



Invariant Measure Coherent State Orthogonality Relation Coset Space Unitary Irreducible Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Grossmann, J. Morlet and T. Paul, J. Math. Phys. 26 (1985) 2473; Ann. Inst. HJPoincaré 45 (1986) 293CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    S.T. Ali and J.-P. Antoine, Coherent states of the 1+1 dimensional Poincaré group: square integrability and a relativistic Weyl transform, preprint UCL-IPT-87-39Google Scholar
  3. [3]
    J.R. Klauder and B.S. Skagerstam, Coherent States — Applications in Physics and Mathematical Physics, World Scientific, Singapore 1985MATHGoogle Scholar
  4. [4]
    A. Borei, Représentations des Groupes Localement Compacts, Lect. Notes in Mathematics, vol. 276, Springer, Berlin et al. 1972Google Scholar
  5. [5]
    H. Moscovici, Commun. Math. Phys. 54 (1977) 63 H. Moscovici and A. Verona, Ann. Inst. H. Poincaré 29 (1978) 139CrossRefMATHADSMathSciNetGoogle Scholar
  6. [6]
    S.T. Ali, Rivista del Nuovo Cim. 8, #11 (1985) 1 S.T. Ali and E. Prugovecki, Acta Appi. Math. 6 (1986) 1, 19, 47CrossRefGoogle Scholar
  7. [7]
    A. Grossmann, G. Loupias and E. M. Stein, Ann. Inst. Fourier, Grenoble, 18 (1968) 343 I. Daubechies and A. Grossmann, J. Math. Phys. 21 (1980) 2080 I. Daubechies, A. Grossmann and J. Reignier, J. Math. Phys. 24 (1983) 239MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J.-P. Antoine
    • 1
  1. 1.Institut de Physique ThéoriqueUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations