Skip to main content

Necessary Conditions at the Boundary for Minimizers in Finite Elasticity

  • Chapter
Mechanics and Thermodynamics of Continua

Abstract

In this paper we derive pointwise algebraic conditions on the elasticity tensor C(x, ∇f(x)) that are necessary for a deformation f to be a local minimizer of the energy of an elastic body that is subjected to dead loads. In particular we show that the Legendre-Hadamard condition, Agmon’s condition, and the new condition: if, for some vector e,

$$e\; \otimes \;{n_{0}}\;\cdot \;{C_{0}}[e\; \otimes \;{n_{0}}] = 0{\text{ }}then{\text{ }}{C_{0}}[e\; \otimes \;{n_{0}}] = {\mathbf{0}}$$
(1.1)

are necessary conditions. Here n 0 = n(x 0) is the outward unit normal to the boundary at any point x 0 where the deformation is not prescribed and C 0 = C(x 0, ∇f(x 0)) where C = ∂2 W/∂(∇f)2; the second derivative of the stored energy W.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15 (1962), 119–147.

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., A. Douglis, & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 35–92.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, J. M., Constitutive inequalities and existence theorems in nonlinear elasto-statics. Nonlinear Analysis and Mechanics Vol. I (R. J. Knops, ed.). London: Pitman, 1977.

    Google Scholar 

  4. Ball, J. M., & R. D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987), 13–52.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Ball, J. M., & J. E. Marsden, Quasiconvexity at the boundary, positivity of the second variation, and elastic stability. Arch. Rational Mech. Anal. 86 (1984), 251–277.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Biot, M. A., Mechanics of Incremental Deformations. New York: Wiley, 1965.

    Google Scholar 

  7. Chen, Y.-C., Stability of pure homogeneous deformations of an elastic plate with fixed edges. Q. J. Mech. Appl. Math. 41 (1988), 249–264.

    Article  MATH  Google Scholar 

  8. De Figueiredo, D. G., The coerciveness problem for forms over vector valued functions. Comm. Pure Appl. Math. 16 (1963), 63–94.

    Article  MathSciNet  MATH  Google Scholar 

  9. Duffin, R. J., Crystal’s theorem on differential equation systems. J. Math. Anal. Appl. 8 (1963), 325–331.

    Article  MathSciNet  Google Scholar 

  10. Gurtin, M. E., Two-phase deformations of elastic solids. Arch. Rational Mech. Anal. 84 (1983), 1–29.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Hadamard, J., Leçons sur la Propagation des Ondes et les Equations de l’Hydrodynamique. Paris: Hermann, 1903.

    MATH  Google Scholar 

  12. Hayes, M., & R. S. Rivlin, Propagation of a plane wave in an isotropic elastic material subjected to pure homogeneous deformation. Arch. Rational Mech. Anal. 8 (1961), 15–22.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hutchinson, J. W.. & V. Tvergaard, Surface instabilities on statically strained plastic solids. Int. J. Mech. Sci. 22 (1980), 339–354.

    Article  MATH  Google Scholar 

  14. Meyers, N. G., Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965), 125–149.

    Article  MathSciNet  MATH  Google Scholar 

  15. Morrey, C. B., Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952), 25–53.

    MathSciNet  MATH  Google Scholar 

  16. Nowinski, J. L., Surface instability of a half-space under high two-dimensional compression. J. Franklin Inst. 288 (1969), 367–376.

    Article  MATH  Google Scholar 

  17. Reddy, B. D., Surface instabilities on an equibiaxially stretched elastic half-space. Math. Proc. Camb. Phil. Soc. 91 (1982), 491–501.

    Article  MATH  Google Scholar 

  18. Simpson, H. C., & S. J. Spector, On failure of the complementing condition and nonuniqueness in linear elastostatics. J. Elasticity 15 (1985), 229–331.

    Article  MathSciNet  MATH  Google Scholar 

  19. Simpson, H. C., & S. J. Spector, On the positivity of the second variation in finite elasticity. Arch. Rational Mech. Anal. 98 (1987), 1–30.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Thompson, J. L., Some existence theorems for the traction boundary value problem of linearized elastostatics. Arch. Rational Mech. Anal. 32 (1969), 369–399.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Truesdell, C, & W. Noll, The Non-linear Field Theories of Mechanics. Handbuch der Physik III/3 (S. Flügge, ed.). Berlin Heidelberg New York: Springer-Verlag, 1965.

    Google Scholar 

  22. van Hove, L., Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues. Proc. Koninklijke Nederlandsche Akademie Van Wetenschappen 50 # 1 (1947), 18–23.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Bernard Coleman on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simpson, H.C., Spector, S.J. (1991). Necessary Conditions at the Boundary for Minimizers in Finite Elasticity. In: Markovitz, H., Mizel, V.J., Owen, D.R. (eds) Mechanics and Thermodynamics of Continua. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75975-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75975-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52999-6

  • Online ISBN: 978-3-642-75975-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics