Advertisement

Global Properties of Buckled States of Plates that can Suffer Thickness Changes

  • Stuart S. Antman

Abstract

This paper treats the axisymmetric buckling of nonlinearly elastic Cosserat plates, which can suffer thickness changes, as well as flexure, midplane extension, and shear. The governing equations are accordingly quite complicated. Nevertheless, it is shown that all solutions, bifurcating or not, have a simple, detailed nodal structure that distinguishes branches globally.

Keywords

Constitutive Function Double Zero Solution Pair Buckle State Cosserat Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Alexander (1981), A primer on connectivity, in Proc. Conf. on Fixed Point Theory, E. Fadell & G. Fournier, eds., Lect. Notes in Math. # 886, Springer-Verlag, New York-Heidelberg-Berlin, 455–483.CrossRefGoogle Scholar
  2. S. S. Antman (1971), Existence and nonuniqueness of axisymmetric equilibrium states of nonlinearly elastic shells, Arch. Rational Mech. Anal.40, 329–371.MathSciNetADSMATHCrossRefGoogle Scholar
  3. S. S. Antman (1972), The Theory of Rods, in Handbuch der Physik, Vol. VIa/2, C. Truesdell, ed., Springer-Verlag, 641–703.Google Scholar
  4. S. S. Antman (1973), Nonuniqueness of equilibrium states for bars in tension, J. Math. Anal. Appl.44, 333–349.MathSciNetMATHCrossRefGoogle Scholar
  5. S. S. Antman (1976), Ordinary differential equations of one-dimensional nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells, Arch. Rational Mech. Anal.61, 307–351.MathSciNetADSMATHGoogle Scholar
  6. S. S. Antman (1978), Buckled states of nonlinearly elastic plates, Arch. Rational Mech. Anal.67, 111–149.MathSciNetADSMATHCrossRefGoogle Scholar
  7. S. S. Antman & E. R. Carbone (1977), Shear and necking instabilities in nonlinear elasticity, J. Elasticity7, 125–151.MathSciNetMATHCrossRefGoogle Scholar
  8. S. S. Antman & P. V. Negrón-Marrero (1987), The remarkable nature of radially symmetric equilibrium states of aeolotropic nonlinearly elastic bodies, J. Elasticity18, 131–164.MathSciNetMATHCrossRefGoogle Scholar
  9. S. S. Antman & J. E. Osborn (1979), The principle of virtual work and integral laws of motion, Arch. Rational Mech. Anal.69, 231–262.MathSciNetADSMATHCrossRefGoogle Scholar
  10. S. S. Antman & J. F. Pierce (1990), The intricate global structure of buckled states of compressible columns, SIAM J. Appl. Math. to appear.Google Scholar
  11. J. Carr, M. E. Gurtin, & M. Slemrod (1984), Structured phase transitions on a finite interval, Arch. Rational Mech. Anal.86, 317–351.MathSciNetADSMATHCrossRefGoogle Scholar
  12. H. Cohen & C. N. DeSilva (1966), Theory of directed surfaces, J. Math. Phys.7, 960–966.MathSciNetADSMATHCrossRefGoogle Scholar
  13. B. D. Coleman (1983), Necking and drawing in polymer fibers under tension, Arch. Rational Mech. Anal.83, 115–137.MathSciNetADSMATHCrossRefGoogle Scholar
  14. B. D. Coleman (1985), On the cold drawing of polymers, Comp. & Maths. with Appls.11, 35–65.MATHGoogle Scholar
  15. B. D. Coleman & D. C. Newman (1988), On the rheology of cold drawing. I. Elastic materials, J. Polymer Sci: Part B: Polymer Phys.26, 1801–1822.ADSCrossRefGoogle Scholar
  16. B. D. Coleman & W. Noll (1963), The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal.13, 167–178.MathSciNetADSMATHCrossRefGoogle Scholar
  17. E. & F. Cosserat (1909), Théorie des Corps Déformables, Hermann.Google Scholar
  18. M. G. Crandall, & P. H. Rabinowitz (1971), Bifurcation from simple eigenvalues, J. Funct. Anal.8, 321–340.MathSciNetMATHCrossRefGoogle Scholar
  19. J. L. Ericksen (1975), Equilibrium of bars, J. Elasticity5, 191–202.MathSciNetMATHCrossRefGoogle Scholar
  20. J. L. Ericksen (1977), Special Topics in Nonlinear Elastostatics, in Advances in Applied Mechanics, Vol. 17, C.-S. Yih, ed., Academic Press.Google Scholar
  21. J. L. Ericksen & C. Truesdell (1958), Exact theory of stress and strain in rods and shells, Arch. Rational Mech. Anal.1, 295–323.MathSciNetADSMATHCrossRefGoogle Scholar
  22. R. C. Gauss & S. S. Antman (1984), Large thermal buckling of nonuniform beams and plates, Int. J. Solids Structures20, 979–1000.MathSciNetMATHCrossRefGoogle Scholar
  23. A. E. Green P. M. Naghdi, & W. L. Wainwright (1965), A general theory of a Cosserat surface, Arch. Rational Mech. Anal.20, 287–308.MathSciNetADSCrossRefGoogle Scholar
  24. P. M. Naghdi (1972) The Theory of Shells, in Handbuch der Physik, Vol. VIa/2, C. Truesdell, ed., Springer-Verlag, 425–640.Google Scholar
  25. P. V. Negrón-Marrero (1985), Large buckling of circular plates with singularities due to anisotropy, Univ. of Maryland, Dissertation.Google Scholar
  26. P. V. Negrón-Marrero (1990), Necked states of nonlinearly elastic plates, Proc. Roy. Soc. Edinburgh, to appear.Google Scholar
  27. P. V. Negrón-Marrero & S. S. Antman (1990), Singular global bifurcation problems for buckling of anisotropic plates, Proc. Roy. Soc. London, to appear.Google Scholar
  28. N. C. Owen (1987), Existence and stability of necking deformations for nonlinearly elastic rods, Arch. Rational Mech. Anal.98, 357–383.MathSciNetADSMATHCrossRefGoogle Scholar
  29. P. H. Rabinowitz (1971), Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7, 487–513.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Stuart S. Antman
    • 1
  1. 1.Department of Mathematics and Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations