Advertisement

Mixture Invariance and its Applications

  • I. Samohýl
  • M. Šilhavý

Abstract

This paper shows that the balance equations and the entropy inequality for mixtures have the following property: some partial quantities can be changed in a prescribed way without affecting the form of the basic equations. This property, called here mixture invariance, is used to simplify the constitutive equations of reacting and non-reacting mixtures. Also agreement with the classical thermochemistry of mixtures can be achieved.

Keywords

Constitutive Equation Equivalent Theory Reference Configuration Total Entropy Entropy Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, B. D., & Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Coleman, B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17, 1–46 (1964).MathSciNetADSGoogle Scholar
  3. 3.
    Coleman, B. D., On thermodynamics, strain impulses, and visco-elasticity. Arch. Rational Mech. Anal. 17, 230–254 (1964).MathSciNetADSMATHGoogle Scholar
  4. 4.
    Bowen, R. M., The thermochemistry of a reacting mixture of elastic materials with diffusion. Arch. Rational Mech. Anal. 34, 97–127 (1969).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Bowen, R. M., Theory of mixtures. Continuum Physics, Vol. III, Mixtures and EM Field Theories (ed. Eringen, A. C.). Academic Press, New York 1976.Google Scholar
  6. 6.
    Müller, I., A thermodynamic theory of mixtures of fluids. Arch. Rational Mech. Anal. 28, 1–39 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Müller, I., Thermodynamik. Grundlagen der Materialtheorie. Bertelsmann Universitätsverlag, Düsseldorf 1973.Google Scholar
  8. 8.
    Williams, W. O., On the theory of mixtures. Arch. Rational Mech. Anal. 51, 239–260 (1973).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Truesdell, C., Rational Thermodynamics (2nd Ed.). Springer, New York 1984.MATHCrossRefGoogle Scholar
  10. 10.
    Samohyl, I., Racionální termodynamika chemicky reagujících směsí (Rational Thermodynamics of Chemically Reacting Mixtures). Academia, Prague 1982.Google Scholar
  11. 11.
    Samohyl, I., Thermodynamics of Irreversible Processes in Fluid Mixtures. Teubner, Leipzig 1987.MATHGoogle Scholar
  12. 12.
    Atkin, R. J., & Craine, J. E., Continuum theories of mixtures: Basic theory and historical development. Q. J. Mech. appl. Math. 29, 209–244 (1976).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Atkin, R. J., & Craine, R. E., Continuum theories of mixtures: Applications. J. Inst. Maths. Applics. 17, 153–207 (1976).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bowen, R. M., & Wiese, J. C., Diffusion in mixtures of elastic materials. Int. J. Engng. Sci. 7, 689–722 (1969).MATHCrossRefGoogle Scholar
  15. 15.
    Samohýl, I., Comparison of classical and rational thermodynamics of reacting fluid mixtures with linear transport properties. Coll. Czechoslov. Chem. Commun. 40, 3421–3435 (1975).Google Scholar
  16. 16.
    Samohyl, I., Reduction of thermodynamic constitutive equations for fluid mixtures using form invariance. Coll. Czechoslov. Chem. Commun. 54, 277–283 (1989).CrossRefGoogle Scholar
  17. 17.
    Samohyl, I., & Šilhavý, M., The thermodynamics of reacting mixtures with heat conduction, diffusion and viscosity. In preparation.Google Scholar
  18. 18.
    Truesdell, C., & Toupin, R., The Classical Field Theories. Handbuch der Physik III/1 (ed. Flügge, S.). Springer, Berlin, 1960.Google Scholar
  19. 19.
    Truesdell, C., Sulle basi della termodinamica delle miscele. Rend. Accad. Naz. Lincei (8) 44, 381–383 (1968).Google Scholar
  20. 20.
    de Groot, S. R., & Mazur, P., Nonequilibrium Thermodynamics. North-Holland, Amsterdam 1962.Google Scholar
  21. 21.
    Coleman, B. D., & Gurtin, M. E., Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967).ADSCrossRefGoogle Scholar
  22. 22.
    Guggenheim, E. A., Thermodynamics. North-Holland, Amsterdam 1957.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • I. Samohýl
    • 1
    • 2
  • M. Šilhavý
    • 1
    • 2
  1. 1.Department of Physical ChemistryInstitute of Chemical TechnologyPragueCzech Republic
  2. 2.Mathematical InstituteCzechoslovak Academy of SciencesPragueCzech Republic

Personalised recommendations