Experimental and First Clinical Results with the Alexandrite Laser Lithotripter

  • H. M. Weber
  • K. Miller
  • J. Rüschoff
  • J. Gschwend
  • R. E. Hautmann

Abstract

Despite the ever increasing use of extracorporeal shock wave lithotripsy for the treatment of urolithiasis, there are still a limited number of stone patients who warrant a percutaneous or transurethral therapy. With the advent of flexible or semirigid ultrafine endoscopes, ultrasound lithotripsy with conventional sonotrodes is no longer possible, since they would require larger working channels. For this reason, laser lithotripsy has become increasingly important in endoscopic stone therapy (Drettler 1990). Since Nd : YAG and pulsed dye lasers that have been used so far each have their own disadvantages, there was a search for technical alternatives. The alexandrite laser being evaluated here represents a newly developed system for laser lithotripsy (Dornier Medizintechnik, Germering, FRG). The aim of this study was to evaluate the lithotriptic potential for different calculi as much as the biologic effects of this laser system. With the assumption that inadvertent exposure of the ureteric or bladder wall could not be entirely avoided, a worst case of laser radiation for an extended period of time had to be simulated.

Keywords

Formalin Catheter Quartz Paraffin Oxalate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhatta KM, Rosen DI, Drettler SP (1989) Plasma shield lasertripsy: in vitro studies. J Urol 142:1110–1112.PubMedGoogle Scholar
  2. Drettler SP (1990) An evaluation of ureteral laser lithotripsy: 225 consecutive patients. J Urol 143:267–272.Google Scholar
  3. Fair HD (1978) In vitro destruction of urinary calculi by laser-induced stress waves. Med Instrum 12:100–105.PubMedGoogle Scholar
  4. Hepp W (1983) Zertrümmerungswirkung von Stoßwellen auf Nieren-und Gallensteine. Biomed Technik, Bd 33, Ergänzungsband 2, Stuttgart, S 15-16.Google Scholar
  5. Hofmann R, Hartung R, Geissdörfer K, Ascherl R, Erhardt W, Schmidt-Kloiber H, Reichel E (1988) Laser induced shock wave lithotripsy — biologic effects of nanosecond pulses. J Urol 139:1077–1079.PubMedGoogle Scholar
  6. Hofstetter AG, Thomas St (1989) Intrakorporale, laserinduzierte Stoßwellenapplikation zur Zerstörung von Harnsteinen, Urologe [A] 28:145–147.PubMedGoogle Scholar
  7. Languetin JM, Jichlinski P, Favre R, Niederhäusern W v (1990) The Swiss lithoclast. J Urol [Suppl] 143:179 A.Google Scholar
  8. Miller K, Bachor R, Sauter T, Hautmann R (1989) Aktuelle Therapie des Harnleitersteins. Urologe [A] 28:148–151.Google Scholar
  9. Muschter R, Thomas S, Knipper A, Maghraby H (1990) Intrakorporale laserinduzierte Lithotripsie. In: Ell C, Marberger M, Berlien P (eds) Extra-und Intrakorporale Lithotripsie. Thieme, Stuttgart.Google Scholar
  10. Reichel E, Schmidt-Kloiber H (1983) Die Anwendung laserinduzierter Stoßwellen am Beispiel der Zerstörung von Harnwegskonkrementen. Med Phys 197–201.Google Scholar
  11. Schmeller N, Hofstetter AG, Pensei J, Thomas S, Frank F, Wondrazek F (1987) Laserinduzierte Stoß-wellenlithotripsie (LISL). Laser Med Surg 3:184–193.Google Scholar
  12. Watson G, Murray S, Drettler SP, Parrish JA (1987) An assessment of the pulsed dye laser for fragmenting calculi in the pig ureter. J Urol 138:199–202.PubMedGoogle Scholar
  13. Watson GM, Wickham JEA, Mills TN, Brown SG, Swain P, Salmon PR (1983) Laser fragmentation of renal calculi. Br J Urol 55:613–616.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • H. M. Weber
    • 1
  • K. Miller
    • 1
  • J. Rüschoff
    • 2
  • J. Gschwend
    • 1
  • R. E. Hautmann
    • 1
  1. 1.Urologische UniversitätsklinikUlmGermany
  2. 2.Medizinisches Zentrum für Pathologie der UniversitätMarburgGermany

Personalised recommendations