Amino Acid Fermentation: Coenzyme B12-Dependent and -Independent Pathways

  • W. Buckel
Part of the 41. Colloquium der Gesellschaft für Biologische Chemie 5.–7. April 1990 in Mosbach/Baden book series (MOSBACH, volume 41)


The fermentation of amino acids to ammonia, carbon dioxide, and short-chain fatty acids is an important step in the mineralization of proteins in soil, sewage sludge, and marine and fresh water sediments. In addition, amino acids are anaerobically degraded in the intestine and in other parts of humans and animals which are badly supplied with oxygen. The majority of the organisms which are involved in these fermentations are Clostridia and other gram-positive bacteria. Only a few representatives are found among the Proteobacteria and in the Bacteroides group (for reviews see Barker 1961, 1981).


Pyridoxal Phosphate Acetyl Phosphate Clostridium Sporogenes Fresh Water Sediment Amino Acid Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberhart, D.J., Gould, S.J., Lin, H.-J., Thiruvengadam, T.K. & Weiller, B.H. (1983) Stereochemistry of lysine 2,3-aminomutase isolated from Clostridium subterminale strain SB4. J. Am. Chem. Soc. 105:5461–5470CrossRefGoogle Scholar
  2. Arkowitz, R.A. & Abeles, R.H. (1989) Identification of acetyl phosphate as the product of clostridial glycine reductase: evidence for an acyl enzyme intermediate. Biochemistry 28:4639–4644PubMedCrossRefGoogle Scholar
  3. Arkowitz, R.A. & Abeles, R.H. (1990) Isolation and characterisation of a covalent selenocysteine intermediate in the glycine reductase system. J. Am. Chem. Soc. 112:870–872CrossRefGoogle Scholar
  4. Babior, B.M. (1982) Ethanolamine ammonia-lyase. In: Dolphin, D. (ed) B12, Vol. 2. Wiley, New York, pp. 263–287Google Scholar
  5. Baker, J.J. & Stadtman, T.C. (1982) Amino mutases. In: Dolphin, D. (ed) B12, Vol. 2. Wiley, New York, pp. 203–232Google Scholar
  6. Baraniak, J., Moss, M.L. & Frey, P.A. (1989) Lysine 2,3-aminomutase. J. Biol. Chem. 264:1357–1360PubMedGoogle Scholar
  7. Barker, H.A. (1937) On the fermentation of glutamic acid. Enzymologia 2:175–182Google Scholar
  8. Barker, H.A. (1961) Fermentations of nitrogenous organic compounds. In: Gunsalus, I.C., Stanier, R.Y. (eds.) The bacteria. Academic Press, Lond New York, pp. 151–207Google Scholar
  9. Barker, H.A. (1981) Amino acid degradation by anaerobic bacteria. Ann. Rev. Biochem. 50:23–40PubMedCrossRefGoogle Scholar
  10. Barker, H.A., Weiβbach, H. & Smyth, R.D. (1958) A coenzyme containing pseudovitamin B12. Proc. Natl. Acad. Sci. USA 44:1093PubMedCrossRefGoogle Scholar
  11. Barker, H.A., D’Ari, L. & Kahn, J. (1987) Enzymatic reactions in the degradation of 5-aminovalerate by Clostridium aminovalericum. J. Biol. Chem. 262:8994–9003PubMedGoogle Scholar
  12. Barnard, G.F. & Akhtar, M. (1979) Mechanistic and stereochemical studies on the glycine reductase of Clostridium sticklandii. Eur. J. Biochem. 99:593–603PubMedCrossRefGoogle Scholar
  13. Buckel, W. (1980) The reversible dehydration of (R)-2-hydroxyglutarate to (E)-glutaconate. Eur. J. Biochem. 106:439–447PubMedCrossRefGoogle Scholar
  14. Buckel, W. & Barker, H.A. (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J. Bacteriol. 117:1248–1260PubMedGoogle Scholar
  15. Cardon, B.P. & Barker, H.A. (1946) Two new amino-acid-fermenting bacteria, Clostridiumpropionicum and Diplococcus glycinophilus. J. Bacteriol. 52:629–634Google Scholar
  16. Chirpich, T.P., Zappia, V., ostilow, R.N. & Barker, H.A. (1970) Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem. 245:1778–1789PubMedGoogle Scholar
  17. Cone, J.E., Martin del Rio, R., Davis, J.N. & Stadtman, T.C. (1976) Chemical characterisation of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73:2659–2663PubMedCrossRefGoogle Scholar
  18. Costilow, R.N. (1977) Selenium requirement for the growth of Clostridium sporogenes with glycine as the oxidant in Stickland reaction systems. J. Bacteriol. 131:366–368PubMedGoogle Scholar
  19. Dowd, P., Choi, S.-C., Duah, F. & Kaufman, C. (1988) A model for the enzyme-catalyzed, coenzyme B12-dependent interconversion of β-methylaspartate with glutamate. Tetrahedron 44:2137–2148CrossRefGoogle Scholar
  20. Dutscho, R., Wohlfarth, G., Buckel, P. & Buckel, W. (1989) Cloning and sequencing of the genes of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Eur. J. Biochem. 181:741–746PubMedCrossRefGoogle Scholar
  21. Givot, I.L., Smith, T.A. & Abeles, R.H. (1969) Studies on the mechanism of action and the structure of the electrophilic center of histidine ammonia lyase. J. Biol. Chem. 244:6341–6353PubMedGoogle Scholar
  22. Hanson, K.R. & Havir, E.A. (1970) L-Phenylalanine ammonia-lyase. IV. Evidence that the prosthetic group contains a dehydroalanyl residue and mechanism of action. Arch. Biochem. Biophys. 141:1–17PubMedCrossRefGoogle Scholar
  23. Hardman, J.K. & Stadtman, T.C. (1963) Metabolism of omega-amino acids. IV. Gamma-Aminobu-tyrate fermentation by cell-free extracts of Clostridium aminobutyricum J. Biol. Chem. 238:2088–2093PubMedGoogle Scholar
  24. Hartrampf, G. & Buckel, W. (1984) The stereochemistry of the formation of the methyl group in the glutamate mutase-catalysed reaction in Clostridium tetanomorphum. FEBS Lett. 171:73–78PubMedCrossRefGoogle Scholar
  25. Hodgins, D.S. & Abeles, R.H. (1969) Studies of the mechanism of action of D-proline reductase: the presence on covalently bound pyruvate and its role in the catalytic process. Arch. Biochem. Biophys. 130:274–285PubMedCrossRefGoogle Scholar
  26. Knappe, J., Neugebauer, F.A., Blaschkowski, H.P. & Gänzler, M. (1984) Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc. Natl. Acad. Sci. USA 81:1332–1335PubMedCrossRefGoogle Scholar
  27. Kuchta, R.D. & Abeles, R.H. (1985) Lactate reduction in Clostridium propionicum. J. Biol. Chem. 260:13181–13189PubMedGoogle Scholar
  28. Kuchta, R.D., Hanson, G.R., Holmquist, B. & Abeles, R.H. (1986) Fe-S centers in lactyl-CoA dehydratase. Biochemistry 25:7401–7307CrossRefGoogle Scholar
  29. Pitsch, C. & Simon, H. (1982) The stereochemical course of the water elimination from (2R)-phenyl-lactate in the amino acid fermentation of Clostridium sporogenes. Hoppe Seyler’s Z. Physiol. Chem. 363:1253–1257PubMedCrossRefGoogle Scholar
  30. Schweiger, G. & Buckel, W. (1984a) Studies on the dehydration of (R)-2-hydroxyglutarate in Acidaminococcus fermentans. A radical mechanism? Arch. Microbiol. 137:302–307CrossRefGoogle Scholar
  31. Schweiger, G. & Buckel, W. (1984b) On the dehydration of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum. FEBS Lett. 171:79–84PubMedCrossRefGoogle Scholar
  32. Schweiger, G. & Buckel, W. (1985) Identification of acrylate, the product of the dehydration of (Ä)-lactate catalysed by cell-free extracts from Clostridium propionicum. FEBS Lett. 185:253–256PubMedCrossRefGoogle Scholar
  33. Schweiger, G., Dutscho, R. & Buckel, W. (1987) Purification of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. An iron-sulfur protein. Eur. J. Biochem. 169:441–448PubMedCrossRefGoogle Scholar
  34. Seto, B. & Stadtman, T.C. (1976) Purification and properties of proline reductase from Clostridium sticklandii. J. Biol. Chem. 251:2453–2439Google Scholar
  35. Stickland, H.L. (1934) Studies in the metabolism of the strict anaerobes (genus Clostridium) I. The chemical reactions by which Cl. sporogenes obtains its energy. Biochem. J. 2:1746–1759Google Scholar
  36. Tanaka, H. & Stadtman, T.C. (1979) Selenium-dependent clostridial glycine reductase. J. Biol. Chem. 254:447–452PubMedGoogle Scholar
  37. Thauer, R.K., Jungermann, K. & Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180PubMedGoogle Scholar
  38. Whiteley, H.R. (1957) Fermentation of amino acids by Micrococcus aerogenes. J. Bacteriol. 74:324–330PubMedGoogle Scholar
  39. Willadsen, P. & Buckel, W. (1990) Assay of 4-hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum. FEMS Microbiol. Lett. 70:187–192Google Scholar
  40. Zindel, U., Freudenberg, W., Rieth, M., Andreesen, J.R., Schnell, J. & Widdel, F. (1988) Eubacterium acidaminophilum. sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch. Microbiol. 150:254–266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • W. Buckel
    • 1
  1. 1.Laboratorium für Mikrobiologie, Fachbereich BiologiePhilipps-UniversitätMarburgGermany

Personalised recommendations