Phosphorylative Electron Transport Without Quinone

  • A. Kröger
  • I. Schröder
  • B. Krems
  • O. Klimmek
Part of the 41. Colloquium der Gesellschaft für Biologische Chemie 5.–7. April 1990 in Mosbach/Baden book series (MOSBACH, volume 41)


The respiratory quinones are considered as essential components of bacterial and mitochondrial phosphorylative electron transport (Kröger 1977; Kröger et al. 1986). They serve as diffusible redox mediators between membrane-integrated dehydrogenases and electron transfer complexes such as the cytochrome b/c1- complex, or certain reductases which react with O2 or other terminal acceptors. In addition, quinones are postulated to be involved in the generation of the electrochemicalproton potential (Δ\(\tilde{\mu}\) H) across the respiratory membrane (von Jagow et al. 1986). The known respiratory systems that lack quinones are aerobic. In these systems, the proton pumping cytochrome oxidase (Chan and Li 1990) is thought to be responsible for generating the Δ\(\tilde{\mu}\) H. The systems of anaerobic respiration involve a quinone (Kröger 1977; Wissenbach et al. 1990) with the exception of sulfur respiration (Paulsen et al. 1986; Schröder et al. 1988). Therefore, it is of interest to find out how the Δ\(\tilde{\mu}\) H is generated in this case. Here, we report on the most elaborate system of electron-transport-coupled phosphorylation with sulfur as acceptor, that is, the sulfur respiration of Wolinella succinogenes.


Electron Transport Turnover Number Formate Dehydrogenase Anaerobic Respiration Respiratory Quinone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brune, A., Spillecke, J. & Kröger, A. (1987) Correlation of the turnover number of the ATP synthase in liposomes with the proton flux and the proton potential across the membrane. Biochim. Biophys. Acta 893:499–507PubMedCrossRefGoogle Scholar
  2. Chan, S.I. & Li, P.M. (1990) Cytochrome c oxidase: understanding nature’s design of a proton pump. Am. Chem. Soc. 29:1–12Google Scholar
  3. Klimmek, O. (1990) Tetrathionat-Sulfid-Mischung als Substrat für das Wachstum von Wolinella succinogenes. Diploma Thesis, FB Biologie, J.W. Goethe-Universität Frankfurt am MainGoogle Scholar
  4. Krems, B. (1989) Polysulfid als Substrat schwefel-reduzierender Bakterien. Diploma Thesis, FB Biologie, J.W. Goethe-Universität Frankfurt am MainGoogle Scholar
  5. Kröger, A. (1977) Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Microbial energetics. Cambridge Univ. Press, pp. 61–93Google Scholar
  6. Kröger, A., Winkler, E., Innerhofer, A., Hackenberg, H. & Schägger, H. (1979) The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur. J. Biochem. 94:465–475PubMedCrossRefGoogle Scholar
  7. Kröger, A., Paulsen, J. & Schröder, I. (1986) Phosphorylative electron transport chains lacking a cytochrome bq complex. J. Bioenerg. Biomembr. 18:225–234PubMedCrossRefGoogle Scholar
  8. Macy, J.M., Schröder, I., Thauer, R.K. & Kröger, A. (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch. Microbiol. 144:147–150CrossRefGoogle Scholar
  9. Mell, H., Wellnitz, C. & Kröger, A. (1986) The electrochemical proton potential and the proton/electron ratio of the electron transport with fumarate in Wolinella succinogenes. Biochim. Biophys. Acta 852:212–221CrossRefGoogle Scholar
  10. Paulsen, J., Kröger, A. & Thauer, R.K. (1986) Energy-driven reverse of electron transport in the catabolism of Desulfuromonas acetoxidans. Arch. Microbiol. 144:78–83CrossRefGoogle Scholar
  11. Schröder, I., Kröger, A. & Macy, J.M. (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes. Arch. Microbiol. 149:572–579CrossRefGoogle Scholar
  12. Schwarzenbach, G. & Fischer, A. (1960) Die Acidität der Sulfane und die Zusammensetzung wässriger Polysulfidlösungen. Helv. Chim. Acta 43:1365–1390CrossRefGoogle Scholar
  13. von Jagow, G., Link, T.A. & Ohnishi, T. (1986) Organization and function of cytochrome b and ubiquinone in the cristae membrane of beef heart mitochondria. J. Bioenerg. Biomembr. 18:157–179CrossRefGoogle Scholar
  14. Wissenbach, U., Kröger, A. & Unden, G. (1990) The specific functions of MK and DMK in the anaerobic respiration with fumarate, demethylsulfoxide trimethylamine N-oxide and nitrate of E coli. Arch. Microbiol. 154:60–66PubMedCrossRefGoogle Scholar
  15. Wloczyk, C., Kröger, A., Göbel, T., Holdt, G. & Steudel, R. (1989) The electrochemical proton potential generated by the sulphur respiration of Wolinella succinogenes. Arch. Microbiol. 152:600–605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. Kröger
  • I. Schröder
  • B. Krems
  • O. Klimmek
    • 1
  1. 1.Institut für MikrobiologieJ. W. Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations