Advertisement

ras Oncogenes in Myelodysplastic Syndromes

  • D. M. Layton
  • C. R. Bartram
Conference paper

Abstract

A milestone in the quest to understand the molecular basis of human cancer was the recognition that proto-oncogenes altered by somatic mutation might act in a dominant fashion in cellular transformation. Such a process may involve illegitimate recombination of proto-oncogenes with distant genomic sequences through chromosomal rearrangement resulting in formation of a novel gene-fusion product, the prototypic examples being the 210- and 190-kDa bcr-abl tyrosine kinases in Philadelphia-positive chronic myeloid and acute lymphoblastic leukaemias [1] or deregulation of proto-oncogene expression, for example, that of c-myc when juxtaposed with the immunoglobulin gene loci in the reciprocal translocations which characterize Burkitts’ lymphoma [2]. Alternatively, overexpression may result from an increase in gene copy number (amplification). With few exceptions, the most striking being those of N-myc and erb-B2 in childhood neuroblastoma [3] and breast cancer [4], respectively, proto-oncogene amplification is consistently detected in few human cancers and may reflect a relatively late event in tumour evolution.

Keywords

Myelodysplastic Syndrome Acute Myeloid Leukaemia Refractory Anaemia Murine Sarcoma Virus Myeloid Neoplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurzrock R, Gutterman JU, Talpaz M (1988) The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 319: 990–998PubMedCrossRefGoogle Scholar
  2. 2.
    Croce CM, Nowell PC (1985) Molecular basis of human B cell neoplasia. Blood 65: 1–7PubMedGoogle Scholar
  3. 3.
    Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop MJ (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124PubMedCrossRefGoogle Scholar
  4. 4.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire W (1987) Human breast cancer correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–181PubMedCrossRefGoogle Scholar
  5. 5.
    Knapp RH, Dewald GW, Pierre RV (1985) Cytogenetic studies in 174 consecutive patients with preleukemic or myelodysplastic syndromes. Mayo Clin Proc 60: 507–516PubMedGoogle Scholar
  6. 6.
    Woloschak GE, Dewald GW, Bahn RS, Kyle RA, Greipp PR, Ash RC (1986) Amplification of RNA and DNA specific for erb B in unbalanced 1; 7 chromosomal translocation associated with myelodysplastic syndrome. J Cell Biochem 32: 23–34PubMedCrossRefGoogle Scholar
  7. 7.
    Pierce JH, Ruggiero M, Fleming TP, Di Fiore PP, Greenberger JS, Vasticovski L, Schlessinger J, Rovera G, Aaronson SA (1988) Signal transduction through the EGF receptor transfected in IL-3-dependent hematopoietic cells. Science 239: 628–631PubMedCrossRefGoogle Scholar
  8. 8.
    Bos JL, Fearon ER, Hamilton SR. Verlaan de Vries M, van Boom JH, van der Eb AJ, Vogelstein B (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327: 293–297Google Scholar
  9. 9.
    Forrester K, Almoguera C, Han K, Gazzle WE, Perucho M (1987) Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327: 298–303PubMedCrossRefGoogle Scholar
  10. 10.
    Rodenhuis S, van de Werering ML, Mooi WJ, Evers SG, van Zandwijk N, Boe JL (1987) Mutational activation of the K-ras oncogene; a possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med 317: 929–935Google Scholar
  11. 11.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53: 549–554PubMedCrossRefGoogle Scholar
  12. 12.
    Bos JL, Toksoz D, Marshall CJ, Verlaan de Vries M, Veeneman GH, van der Eb AJ, van Boom JH, Janssen JWG, Steenvoorden ACM (1985) Amino acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315: 726–730Google Scholar
  13. 13.
    Needleman SW, Kraus MH, Srivastava SK, Levine PH, Aaronson SA (1986) High frequency of N-ras activation in acute myelogenous leukemia. Blood 67: 743–757Google Scholar
  14. 14.
    Bos JL, Verlaan de Vries M, van der Eb AJ, Janssen JWG, Delwel R, Lowenberg B, Colly LP (1987) Mutations in N-ras predominate in acute myeloid leukemia. Blood 69: 1237–1241Google Scholar
  15. 15.
    Janssen JWG, Steenvorden ACM, Lyons J, Anger B, Boulke JV, Bos JL, Seliger H, Bartram CR (1987) Ras gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders and myelodysplastic syndromes. Proc Nat Acad Sci USA 84: 9228–9232Google Scholar
  16. 16.
    Farr FJ, Saiki RK, Erlich HA, McCormick F, Marshall CJ (1988) Analysis of ras gene mutation in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA 85: 1629–1633PubMedCrossRefGoogle Scholar
  17. 17.
    Barbacid M (1987) Ras genes. Ann Rev Biochem 56:779–827Google Scholar
  18. 18.
    Neer EJ, Clapham DE (1988) Roles of G protein subunits in transmembrane signalling. Nature 333: 129–134PubMedCrossRefGoogle Scholar
  19. 19.
    Shen CJ, Rettenmier CW, Sacca R, Roussell MF, Look AT, Stanley ER (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41: 665–676CrossRefGoogle Scholar
  20. 20.
    Feldman RA, Gabrilove JL, Tam JP, Moore MAS, Hanafusa H (1985) Specific expression of the human cellular fps/fes encoded protein NCP92 in normal and leukemic myeloid cells. Proc Natl Acad Sci USA 82: 2379–2383PubMedCrossRefGoogle Scholar
  21. 21.
    DeFeo D, Ganda MA, Young HA, Chang EH, Lowry DR, Scolnick EM, Ellis RW (1981) Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc Natl Acad Sci USA 78: 3328–3332CrossRefGoogle Scholar
  22. 22.
    Ellis RW, De Feo O, Shih TY, Gonda MA, Young HA, Tsuchida N, Lowry DR, Scolnick EM (1981) The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 292: 506–511PubMedCrossRefGoogle Scholar
  23. 23.
    Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475–480PubMedCrossRefGoogle Scholar
  24. 24.
    Westaway D, Papkoff J, Moscovici C, Varmus HE (1986) Identification of a provirally activated c-Ha-ras oncogene in an avian nephroblastoma via a novel procedure: cDNA cloning of a chimaeric viral-host transcript. EMBO J 5: 301–309Google Scholar
  25. 25.
    George DL, Glick B, Trusko S, Freeman N. Enhanced c Ki ras expression associated with Friend virus integration in a bone marrow-derived mouse cell line. Proc Natl Acad Sci USA 83: 1651–1655Google Scholar
  26. 26.
    Pulciani S, Santos E, Long LK, Sorrentino V, Barbacid M (1985) Ras gene amplification and malignant transformation. Mol Cell Biol 5: 2836–2841Google Scholar
  27. 27.
    Bos JL, Verlaan de Vries M, Marshall CJ, Veeneman GH, van Boom JH, van der Eb AJ (1986) A human gastric carcinoma contains a single mutated and an amplified normal allele of the Ki-ras oncogene. Nucleic Acids Res 14: 1209–1217Google Scholar
  28. 28.
    Yokota J, Tsunetsuga-Yokota Y, Battifora H, Le Fevre C, Cline MJ (1986) Alterations of myc, rnyb and rases’ proto-oncogenes in cancer are frequent and show clinical correlation. Science 231: 261–265PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen JB, Levinson AD (1988) A point mutation in the last intron responsible for increased expression and transforming activity of the c-Ha-ras oncogene. Nature 334: 119–124PubMedCrossRefGoogle Scholar
  30. 30.
    McGrath JP, Capon DJ, Goeddel DV, Levinson AD (1984) Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310: 644–649PubMedCrossRefGoogle Scholar
  31. 31.
    Sweet RW, Yokoyamia S, Kamata T. Feramisco JR, Rosenberg M, Gross M (1984) The product of ras is a GTP-ase and the T24 mutant is deficient in this activity. Nature 311: 273–275PubMedCrossRefGoogle Scholar
  32. 32.
    Gibbs JB, Sigal IS, Poe M. Scolnick EM (1984) Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA 81: 5704–5708Google Scholar
  33. 33.
    Walter M, Clark SG, Levinson AD (1986) The oncogenic activation of human p21“’ by a novel mechanism. Science 233: 649–652PubMedCrossRefGoogle Scholar
  34. 34.
    Sigal IS, Gibbs JB, D’Alonzo JS, Temeles GL, Wolanski BS, Socher SH, Scolnick EM (1986) Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc Natl Acad Sci USA 83: 952–956PubMedCrossRefGoogle Scholar
  35. 35.
    de Vos AM, Tong L, Milburn MV, Matias PM, Jancarik J, Noguchi S. Nishimura S, Miura K, Ohtsuka E, Kim S-H (1988) Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 239: 888–893Google Scholar
  36. 36.
    Kirai H, Tanaka S, Azuma M, Anraku Y, Kobayishi Y, Fujisaiwa M, Okabe T. Urabe A, Takaku F (1985) Transforming genes in human leukemic cells. Blood 66: 1371–1378Google Scholar
  37. 37.
    Lui E, Hjelle B, Bishop MJ (1988) Transforming genes in chronic myelogenous leukemia. Proc Natl Acad Sci USA 85: 1952–1956CrossRefGoogle Scholar
  38. 38.
    Hirai H, Kobayashi Y, Mano H, HagiwaraK, Maru Y. Omine M, Mizoguchi H, Nishida J, Takaku F (1987) A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome. Nature 327: 430Google Scholar
  39. 39.
    Lui E, Hjelle B. Morgan R, Hecht F, Bishop MJ (1987) Mutations of the Kirsten-ras proto-oncogene in human preleukaemia. Nature 330: 180–186Google Scholar
  40. 40.
    Mufti GJ, Galton DAG (1986) Myelodysplastic syndromes: natural history and features of prognostic importance. Clin Haematol 15: 953–971PubMedGoogle Scholar
  41. 41.
    Shih C, Shilo B-Z, Goldfarb MP, Dannenberg A, Weinberg RA (1979) Passage of chemically transformed cells via transfection of DNA and chromatin. Proc Natl Acad Sci USA 76: 5714–5718PubMedCrossRefGoogle Scholar
  42. 42.
    Santos E, Reddy EP, Pulciani S, Feldmann RJ, Barbacid M (1983) Spontaneous activation of a human proto-oncogene. Proc Natl Acad Sci USA 80: 4679–4683PubMedCrossRefGoogle Scholar
  43. 43.
    Bos JL, Verlaan de Vries M, Jansen AM, Veeneman GH, van Boom JH, van der Eb AJ (1984) Three different mutations in codon 61 of the human N-ras gene detected by synthetic oligonucleotide hybridization. Nucleic Acids Res 12: 9155–9163Google Scholar
  44. 44.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354PubMedCrossRefGoogle Scholar
  45. 45.
    Verlaan de Vries M, Bogaard ME, van den Elst H, van Boom JH, van der Eb AJ, Bos JL (1986) A dot-blot screening procedure for ras oncogenes using synthetic oligodeoxynucleotides. Gene 50: 313–320Google Scholar
  46. 46.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Guchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491PubMedCrossRefGoogle Scholar
  47. 47.
    Lyons J, Johannes WG, Bartram C, Layton M, Mufti GJ (1988) Mutation of Ki-ras and N-ras oncogenes in myelodysplastic syndromes. Blood 71: 1707–1712PubMedGoogle Scholar
  48. 48.
    Padua RA, Carter G, Hughes D, Gow J, Farr C, Oscier D, McCormick F, Jacobs A (1988) ras Mutations in myelodysplastic detected by amplification, oligonucleotide hybridization and transformation. Leukemia 2: 500–510Google Scholar
  49. 49.
    Shen WPV, Aldrich TH, Venta-Perez G, Franza BR Jr, Fustl ME (1987) Expression of normal and mutant ras proteins in human acute leukemia. Oncogene 1: 157–165PubMedGoogle Scholar
  50. 50.
    Buschle M, Janssen JWG, Drexter H, Lyons J, Anger B, Bartram CR (1988) Evidence for pluripotent stem cell origin of idiopathic myelofibrosis: clonal analysis of a case characterized by a N-ras gene mutation. Leukaemia 2: 658–660Google Scholar
  51. 51.
    Pierce JH, Aaronson SA (1985) Myeloid cell transformation by ras-containing murine sarcoma viruses. Mol Cell Biol 5: 667–674PubMedGoogle Scholar
  52. 52.
    Layton DM (1991) The molecular biology of Myelodysplastic Syndromes. In: Mufti GT, Galton DAG (eds) The Myelodysplastic Syndromes. Churchill LivingstoneGoogle Scholar
  53. 53.
    Lea T, Vartdal F, Davies C, Ugelstad J (1985) Magnetic monosized polymer particles for fast and specific fractionation of human mononuclear cells. Scand J Immunol 22: 207–216PubMedCrossRefGoogle Scholar
  54. 54.
    Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich H (1986) Analysis of enzymatically amplified ß-globin and HLA-DQ DNA with allele-specific oligonucleotide probes. Nature 324: 163–166PubMedCrossRefGoogle Scholar
  55. 55.
    Janssen JWG, Buschle M, Layton M, Drexler HG, Lyons J, van den Berghe H, Heimpel H, Kubanek B, Kleihauer E, Mufti GJ, Bartram CR (1989) Clonal analysis of myelodysplastic syndromes: evidence for multipotent stem cell origin. Blood (to be published)Google Scholar
  56. 56.
    Layton DM, Mufti GJ, Lyons J, Janssen JWG, Bartram CR (1988) Loss of ras oncogene mutation in a myelodysplastic syndrome after low-dose cytarabine therapy. N Engl J Med 318: 1468–1469PubMedCrossRefGoogle Scholar
  57. 57.
    Griffin JD, Spriggs D, Wisch JS, Kufe DW (1985) Treatment of preleukemic syndromes with continuous intravenous infusion of low dose cytosine arabinoside. J Clin Oncol 3: 982–991PubMedGoogle Scholar
  58. 58.
    Mittermuller J, Kolb HJ, Gerhartz HH, Wilmanns W (1986) In vivo differentiation of leukaemic blasts and effect of low dose Ara-c in a marrow grafted patient with leukaemic relapse. Br J Haematol 62:757–762Google Scholar
  59. 59.
    Sukumar S, Notano V, Martin-Zanca D, Barbacid M (1983) Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306: 658–661PubMedCrossRefGoogle Scholar
  60. 60.
    Balmain A, Ramsden M, Bowden GT, Smith J (1984) Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307: 658–660PubMedCrossRefGoogle Scholar
  61. 61.
    Albino AP, Le Strange R, Oliff AT, Furth ME, Old LJ (1984) Transforming ras genes from human melanoma: a manifestation of tumour heterogeneity? Nature 308: 69–72PubMedCrossRefGoogle Scholar
  62. 62.
    Vousden KH, Marshall CJ (1984) Three different activated ras genes in mouse tumours; evidence for oncogene activation during progression of a mouse lymphoma. EMBO J 3: 913–917Google Scholar
  63. 63.
    Hirai H, Okada M, Mizoguchi H, Mano H, Kobayashi Y, Nishida J, Takatu F (1988) Relationship between an activated N-ras oncogene and chromosomal abnormality during leukemic progression from myelodysplastic syndrome. Blood 71: 256–258PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. M. Layton
    • 1
  • C. R. Bartram
    • 2
  1. 1.Department of Haematological MedicineKing’s College College School of Medicine and DentistryLondonUK
  2. 2.Section of Molecular Biology, Department of Paediatrics IIUniversity of UlmUlmGermany

Personalised recommendations