Skip to main content

Therapeutical Drug Monitoring of Anticancer Drugs

  • Conference paper

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

Abstract

The idea of using plasma concentrations as a quantitative approach to therapeutical decision making emanates from an intent to reduce toxicity and improve drug efficacy, and to allow a more objective assessment of pharmacological therapy. Since its introduction in the early 1960s, it has developed as one of the most expanding components of diagnostic laboratory medicine today [1,2]. It has become especially useful for drugs with low therapeutical indices and for drugs with therapeutical effects that are difficult to evaluate. Maintaining plasma drug concentrations within a defined therapeutical range has been shown to improve efficacy, and reduce toxicity for therapy with several groups of drugs such as antiasthmatic, antiarrhytmic, antibacterial and antirheumatic drugs [2]. In the past, answers to many of the therapeutical questions regarding these drugs were obtained by trial and error, and pharmacotherapy was generally based on the selection of a dose, dosing interval, route of administration followed by observations of the response of the patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLeod SM: Therapeutic drug monitoring: what is its role in modern practise? Annals of the Royal College of Physicians and Surgeons of Canada 1986 19: 35–39

    Google Scholar 

  2. Holford NHG: Therapeutic drug monitoring. In: Avery GS ed Drug treatment. Sydney 1988 pp 194–222

    Google Scholar 

  3. Moore MJ, Erlichman C: Therapeutic drug monitoring in oncology: Problems and potential in antineoplastic therapy. Clin Pharmacokin 1987 13:205–227

    Article  CAS  Google Scholar 

  4. Rowland M, Tozer TN: Clinical Pharmacokinetics. Lea & Febiger, Philadelphia 1989

    Google Scholar 

  5. Vozeh S: Cost-effectiveness of therapeutic drug monitoring. Clin Pharmacokinet 1987 13: 131–140

    Article  PubMed  CAS  Google Scholar 

  6. Paalzow LK: How physiological and pathophysiological factors influence the pharmacokinetics and analgesic effect of opiates in cancer patients. In: Domellöf L ed Drug Delivery in Cancer Treatment I. Springer-Verlag, Berlin Heidelberg 1987 pp 18–27

    Google Scholar 

  7. Paalzow LK: Pharmacokinetic aspects of drug-drug and drug-plastic interactions with anticancer drugs. In: Domellöf L ed Drug Delivery in Cancer Treatment H. Springer-Verlag, Berlin Heidelberg 1989 pp 15–26

    Chapter  Google Scholar 

  8. Pawls G: Effect of human renal and hepatic disease on the pharmacokinetics of anticancer drugs. Cancer Treat Rev 1982 9: 85–124

    Google Scholar 

  9. Kaplan BS, Gault MH, Knaack J: Nephropathy as a consequence of neoplasms or their treatment. In: Klastersky et al eds Medical complications in Cancer Patients. Raven Press, New York 1981 pp 135–153

    Google Scholar 

  10. Schilsky R: Renal and metabolic toxicities of cancer chemotherapy. Seminars in Oncology 1982 9: 75–83

    PubMed  CAS  Google Scholar 

  11. Crom WR, Pratt CB, Green AA, Champion JE, Crom DB, Stewart CF and Evans WE: The effect of prior cisplatin therapy on the pharmacokinetics of high dose methrotrexate. J Clin Oncol 1984 2 No. 6

    Google Scholar 

  12. Zimm S, Collins JM, O’Neill D, Chabner BA, Poplack DG: Inhibition of first-pass metabolism in cancer chemotherapy: Interaction of 6-mercaptopurine and allopurinol. Clin Pharmacol Ther 1983 34: 810–817

    Article  PubMed  CAS  Google Scholar 

  13. Poplack DG, Balis FM and Zimm S: The pharmacology of orally administered chemotherapy. Cancer 1986 Suppl July 15:473–480

    Article  Google Scholar 

  14. Finn C, Sadee W: Determination of 5-fluorouracil NSC-19893 plasma levels in rats and man by isotope dilution-mass fragmentography. Cancer Chemother Rep 1975 59: 279–286

    CAS  Google Scholar 

  15. Balis FM, Holcenberg JS, Bleyer WA: Clinical pharmacokinetics of commonly used anticancer drugs. Clin Pharmacokin 1983 8: 202–232

    Article  CAS  Google Scholar 

  16. Christophidis N, Vajda FJE, Lucus J, Drummer O, Moon WJ, Louis WJ: Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokin 1978 3: 330–336

    Article  Google Scholar 

  17. Ehrsson H, Eksborg S, Österborg A, Mellerstedt H, Lindfors A: Oral melphalan pharmacokinetics in relation to dose and days of treatment. Med Oncol & Tumour Pharmacother 1989 6: 151–154

    CAS  Google Scholar 

  18. Tattersall MHN, Jarman M, Newlands ES et al: Pharmacokinetics of melphalan following oral or intravenous adminstration in patients with malignant disease. EurJ Cancer 1978 14: 507–513

    Article  CAS  Google Scholar 

  19. Harvey VJ, Slevin ML, Joel SP et al: Variable bioavailability following repeated oral doses of etoposide. Eur J Cancer Clin Oncol 1985 21: 1315–1319

    Article  PubMed  CAS  Google Scholar 

  20. Smythe RD, Pfeffer M, Scaizo A, Comis RL: Bioavailability and pharmacokinetics of etoposide VP-16. Seminars in Oncology 1985 12: 48–51

    Google Scholar 

  21. D’Incalci M, Boils G, Mangioni C et al: Variable oral absorption of hexamethylmelamine in man. Cancer Treat Rep 1978 62:2117–2119

    PubMed  Google Scholar 

  22. Ehrsson H, Wallin I, Nilsson SO, Johansson B: Pharmacokinetics of chlorambucil in man after administration of the free drug and its prednisolone ester. EurJ Clin Pharmacol 1983 24: 251–253

    Article  CAS  Google Scholar 

  23. Balis FM, Savitch JL, Bleyer WA: Pharmacokinetics of oral methotrexate in children. Cancer Res 1983 43: 2342–2345

    PubMed  CAS  Google Scholar 

  24. Campbell MA, Perrier DG, Dorr RT, Alberts DS, Finley PR: Methotrexate: Bioavailability and pharmacokinetics. Cancer Treat Rep 1985 69: 833–838

    PubMed  CAS  Google Scholar 

  25. Smith DK, Omura GA, Ostroy F: Clinical pharmacology of intermediate dose oral methotrexate. Cancer Chemot Pharmacol 1980 4: 117–120

    CAS  Google Scholar 

  26. EORTC: Pharmacokinetically guided dose escalation in phase I clinical trials. Commentary and proposed guidelines. Eur J Cancer Clin Oncol 1987 23: 1083–1087

    Article  Google Scholar 

  27. Beal SL, Sheiner LB: The NONMEM system. American Statistician 1980 34: 178

    Article  Google Scholar 

  28. Sheiner LB, Rosenberg BG, Marathe VV: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokin Biopharm 1977 5: 445–480

    Article  CAS  Google Scholar 

  29. Grasela TH, Sheiner LB, Rambeck B, Boenigk HE, Dunlop A, Mullen PW, Wadsworth J, Richens A, lshizaki T, Chiba K, Miura H, Minagawa K, Blain PG, Mucklow JC, Bacon CT, Rawlins M: Steady-state pharmacokinetics of phenytoin from routinely collected patient data. Clin Pharmacokin 1983 8: 355–364

    Article  CAS  Google Scholar 

  30. Grasela TH, Sheiner LB: Population pharmacokinetics of procainamide from routine clinical data. Clin Pharmacokin 1984 9: 545

    Article  CAS  Google Scholar 

  31. Mungall DR, Ludden TM, Marshall J, Hawkins DW, Talbert RL, Crawford MH: Population pharmacokinetics of racemic warfarin in adult patients. J Pharmacokin Biopharm 1985 13: 213

    Article  CAS  Google Scholar 

  32. Frei Ill E, Canellos GP: Dose: a critical factor in cancer chemotherapy. Am J Med 1989 69: 585–594

    Article  Google Scholar 

  33. Bruce WR, Meeker BE, Valeriote FA. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony forming cells to chemotherapeutic agents administered in vivo. J Nat Cancer Inst 1966 36: 233–245

    Google Scholar 

  34. Frei Ill E, Blum RH, Pitman SW et al: High dose methotrexate with leucovorin rescue. Am J Med 1980 68: 370–376

    Article  Google Scholar 

  35. Pinedo HM, Zaharko DS, Bull JM et al: The reversal of methotrexate cytotoxicity to mouse bone marrow cells by leucovorin and nucleotides. Cancer Res 1977 36: 4418–4424

    Google Scholar 

  36. Pinedo HM, Chabner BA: Role of drug concentration, duration of exposure and endogenous metabolites in determining methotrexate cytotoxicity. Cancer Treat Rep 1977 61: 709–715

    PubMed  CAS  Google Scholar 

  37. Stoller RG, Hande KR, Jacobs SA et al: Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med 1977 297: 630–634

    Article  PubMed  CAS  Google Scholar 

  38. Keefe DA, Capizzi RI, Rudnick SA: Methotrexate cytotoxicity for L5178Y/Asn-lymphoblaste: relationship of dose and duration of exposure to tumour cell viability. Cancer Res 1982 42: 1641–1645

    PubMed  CAS  Google Scholar 

  39. Evans WE, Pratt CB, Taylor RH, Barker LF, Crom WR: Pharmacokinetic monitoring of high dose methotrexate. Cancer Chemother Pharmacol 1979 3: 161–166

    Article  PubMed  CAS  Google Scholar 

  40. Isacoff WH, Morrison PF, Aroesty J, Willis KL, Block JB, Lincoln TL: Pharmacokinetics of high-dose methotrexate with citrovorum factor rescue. Cancer Treat Rep 1977 61: 1665–1674

    PubMed  CAS  Google Scholar 

  41. Reich SDI, Gonczy C: Mathematical modeling-guide to high-dose methotrexate infusion therapy. Cancer Chemother Pharmacol 1979 3: 25–31

    PubMed  CAS  Google Scholar 

  42. Kerr IG, Jolivet J, Collins JM, Drake JC, Chabner BA: Test dose for predicting high-dose methotrexate infusions. Clin Pharmacol Ther 1983 33: 44–51

    Article  PubMed  CAS  Google Scholar 

  43. Evans WE, Crom WR, Yalowich J: Methotrexate. In: Evans et al eds Applied Pharmacokinetics, Applied Therapeutics, Spokane 1986 pp 1009–1056

    Google Scholar 

  44. Au JLS, Rustum YM, Ledesma EJ et al: Clinical pharmacological studies of concurrent infusion of 5fluorouracil and thymidine in treatment of colorectal carcinomas. Cancer Res 1982 42: 2930–2937

    PubMed  CAS  Google Scholar 

  45. Goldberg JA, Kerr DJ, Willmott N et al: Pharmacokinetics and pharmacodynamics of locoregional 5-fluorouracil 5-FU in advanced colorectal liver metastases. Br J Cancer 1988 57: 186–189

    Article  PubMed  CAS  Google Scholar 

  46. Milano G, Roman P, Khater R et al: Dose versus pharmacokinetics for predicting tolerance to 5-day continuous infusion of 5-FU. tat J Cancer 1988 41: 537–541

    CAS  Google Scholar 

  47. Evans EW, Relling MV: Clinical pharmacokineticspharmacodynamics of anticancer drugs. Clin Pharmacokin 1989 16: 327–336

    Article  CAS  Google Scholar 

  48. Rodman JH, Abromowitch M, Sinkule JA, Rivera GK, Evans WE: Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a Phase I trial. J Clin Oncol 1987 5: 1007–1014

    PubMed  CAS  Google Scholar 

  49. Egorin MJ, Van Echo SJ, Tipping EA et al: Pharmacokinetics and dosage reduction of carboplatin in patients with impaired renal function. Cancer Res 1984 44: 5432–5438

    PubMed  CAS  Google Scholar 

  50. Vozeh S, Steimer JL: Feedback control methods for drug dosage optimisation: concepts, classification, and clinical application. Clin Pharmacokin 1985 10: 457–476

    Article  CAS  Google Scholar 

  51. Peck CC, Rodman JH: Analysis of clinical pharmacokinetic data for individualizing drug dosage regimens. Applied Therapeutics Spokane 1986 pp 55–82

    Google Scholar 

  52. Sheiner LB, Rosenberg B, Marathe VV: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokin Biopharm 1977 5: 445–479

    Article  CAS  Google Scholar 

  53. Sheiner L, Rosenberg B, Melmon K: Modeling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res 1972 5: 441–459

    Article  Google Scholar 

  54. Whiting B, Kelman AW, Bryson SM, Derkx FHM, Thomson AH, Fotheringham GH, Joel SE: Clinical pharmacokinetics: a comprehensive system for therapeutic drug monitoring and prescribing. Br Med J 1984 288: 541

    Article  CAS  Google Scholar 

  55. Vozeh S, Berger M, Wenk M, Ritz R, Follath F: Rapid prediction of individual dosage requirements for lignocaine. Clin Pharmacokin 1984 9: 354–363

    Article  CAS  Google Scholar 

  56. Burton ME, Vasko MR, Brater DC: Comparison of drug dosing methods. Clin Pharmacokin 1985 10: 1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paalzow, L.K. (1990). Therapeutical Drug Monitoring of Anticancer Drugs. In: Domellöf, L. (eds) Drug Delivery in Cancer Treatment III. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75938-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75938-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75940-6

  • Online ISBN: 978-3-642-75938-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics