Glass Cell Method for High-Pressure, High-Resolution NMR Measurements. Applications to the Studies of Pressure Effects on Molecular Conformation and Structure

  • Hiroaki Yamada
Part of the NMR Basic Principles and Progress book series (NMR, volume 24)


The author describes how to conduct the high-resolution NMR measurements under the pressures up to 200 ~ 300 MPa (2000 ~ 3000 atm) on the standard, commercially available high-resolution spectrometer. Examples of the experimental application of this simple technique to the studies of pressure-induced structural changes in individual molecules is also presented.


Pressure Effect Partial Molar Volume Glass Cell Proton Chemical Shift Fine Capillary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols and Abbreviations


half-height width




high-pressure high-resolution nuclear magnetic resonance


hertz, cycle per second






outside diameter/inside diameter

Φ (in Eq. 7)

dihedral angle


polytetrafluoroethylene, Teflon


polyvinyl chloride




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.(a)
    Jonas J (1973) Adv Magn Reson 6: 73Google Scholar
  2. (b).
    Jonas J (1975) In: Eyring H, Christensen CJ, Johnston HS (eds) Annual review of physical chemistry, Annual Reviews Inc, California, vol 26, p 167Google Scholar
  3. (c).
    Jonas J (1978) In: Kelm H (ed) High pressure chemistry, Reidel, Dordrecht, p 65Google Scholar
  4. (d).
    Jonas J (1980) Rev Phys Chem Jpn 50: 19Google Scholar
  5. (e).
    Isaacs NS (1981) Liquid phase high pressure chemistry, John Wiley & Sons, Chichester, Chapters 1, 6Google Scholar
  6. (f).
    Morishima I, Hara M (1983) Kagaku no Ryoiki Zokan No 142: 77Google Scholar
  7. (g).
    Jonas J (1984) Acc Chem Res 17: 74CrossRefGoogle Scholar
  8. (h).
    Ando I, Webb GA (1986) Magn Reson Chem 24: 557CrossRefGoogle Scholar
  9. (i).
    Morishima I (1987) In: Jannasch HW, Marquis RE, Zimmerman AM (eds) Current perspectives in high pressure biology, Academic, London, p 315Google Scholar
  10. 2.
    Benedek GB, Purcell Em (1954) J Chem Phys 22: 2003CrossRefGoogle Scholar
  11. 3.
    a) Jonas J (1972) Rev Sci Instrum 43: 643CrossRefGoogle Scholar
  12. (b).
    Jouanne J, Heidberg J (1972) J Magn Reson 7: 1CrossRefGoogle Scholar
  13. c) Yamada H (1972) Chem Lett 747Google Scholar
  14. (d).
    Yamada H (1974) Rev Sci Instrum 45: 640CrossRefGoogle Scholar
  15. (e).
    Oldenziel JG, Trappeniers NJ (1976) Physica 82A: 565CrossRefGoogle Scholar
  16. (f).
    Gaarz U, Ludemann H-D (1976) Ber Bunsenges Phys Chem 80: 607Google Scholar
  17. (g).
    Vanni H, Earl WL, Merbach AE (1978) J Magn Reson 29: 11CrossRefGoogle Scholar
  18. (h).
    Earl WL, Vanni H, Merbach AE (1978) ibid 30: 571Google Scholar
  19. (i).
    Williams RK (1978) Rev Sci Instrum 49: 591CrossRefGoogle Scholar
  20. (j).
    Yamada H, Fujino K, Nakatsuka M, Sera A (1979) Chem Lett 217Google Scholar
  21. 4.
    A detailed review of recent progress in the high-resolution area is presented in Ref 1 (h)Google Scholar
  22. 5.
    Gordon S, Dailey BP (1961) J Chem Phys 34: 1084CrossRefGoogle Scholar
  23. (b).
    Raynes WT, Buckingham AD, Bernstein HJ (1962) J Chem Phys 36: 3481CrossRefGoogle Scholar
  24. 6.
    a) Rummens FHA (1971) Mol Phys 21: 535CrossRefGoogle Scholar
  25. (b).
    Meinzer RA (1965) Thesis, University of Illinois (1966) Diss Abstr 66: 4238Google Scholar
  26. (c).
    Trappeniers NJ, Ahlers JA (1973) Chem Phys Letters 21: 226CrossRefGoogle Scholar
  27. (d).
    Jameson AK, Jameson CJ, Gutowsky HS (1970) J Chem Phys 53: 2310CrossRefGoogle Scholar
  28. 7.
    Ref 1 (e) chapter 1Google Scholar
  29. 8.
    Phillips CJ (1965) American Scientist 53: 20Google Scholar
  30. (b).
    Hillig WB (1962) In: McKenzie JD (ed) Modern aspects of the vitreous state, Butterworths, Washington, p 152Google Scholar
  31. (c).
    Naray-Szabo I, Ladik J (1960) Nature 188: 226CrossRefGoogle Scholar
  32. 9.
    Griffith A A (1920) Phil Trans Roy Soc A221: 163Google Scholar
  33. 10.
    Brearley W, Hastilow PAP, Holloway DG (1962) Phys Chem Glasses 3: 181Google Scholar
  34. 11.
    Inglis CE (1913) Trans Inst Nav Archit, London 55: 219Google Scholar
  35. 12.
    Greene CH (1931), Phillips CJ (1936) Unpublished study done at Corning Glass Works. See Ref (8a)Google Scholar
  36. (b).
    Argon AS, Hori Y, Orowan E (1960) J Am Ceram Soc 43: 86CrossRefGoogle Scholar
  37. (c).
    Symmers C, Ward JB, Sugarman B (1962) Phys Chem Glasses 3: 76Google Scholar
  38. 13.
    Statistically, the measured strength, σT, of glass specimens is shown to increase as the size decreases [8a]. This can be understood on the basis of the reasoning that a chain is only as strong as its weakest link: It is obvious that as area of specimen increases, so does the chance of finding a more damaging crack. Thus, all other things equal, small glass specimens (for example, glass fibers) should exhibit larger σT than massive ones (for example, glass rods)Google Scholar
  39. 14.
    Composition of the glass used is given in Sect. 2.3.2Google Scholar
  40. 15.
    See Sect. 2.4.1Google Scholar
  41. 16.
    International Critical Tables, Mcgraw-Hill, New York (1928), 3: 42Google Scholar
  42. 17.
    When adhesive AT 1 is used, heating at 150°C for 3 h is recommendedGoogle Scholar
  43. 18.
    A detailed description of this new technique, which is still under development in our laboratory, will appear elsewhereGoogle Scholar
  44. 19.
    For example, the experiments at — 58 °C [20a] and at — 87°C [20b] on a modified version of the present high-pressure apparatus, have been performed by Ludemann.Google Scholar
  45. 20.
    a) Ludemann H-D, Rauchschwalbe R, Lang E (1977) Angew Chem Int Ed Engl 16: 331CrossRefGoogle Scholar
  46. b.
    Lang E, Ludemann H-D (1977) J Chem Phys 67: 718CrossRefGoogle Scholar
  47. 21.
    Morishima I, Ogawa S, Yamada H (1979) J Am Chem Soc 101: 7074CrossRefGoogle Scholar
  48. (b).
    Morishima I, Ogawa S, Yamada H (1980) Biochemistry 19: 1569CrossRefGoogle Scholar
  49. c) Imashiro F, Saika A, Yamada H, Sera A (1981) Chem Lett 247Google Scholar
  50. (d).
    Morishima I, Hara M (1982) J Am Chem Soc 104: 6833CrossRefGoogle Scholar
  51. (e).
    Morishima I, Hara M (1983) Biochemistry 22: 4102CrossRefGoogle Scholar
  52. (f).
    Morishima I, Hara M (1983) J Biol Chem 258: 11428Google Scholar
  53. (g).
    Morishima I, Hara M (1984) Biochem Biophys Res Commun 121: 229CrossRefGoogle Scholar
  54. (h).
    Yamada H, Kotani K, Sera A (1984) J Chem Soc Perkin Trans II: 1029Google Scholar
  55. (i).
    Yamada H, Furubayashi K, Sera A, Ueji S, Azumi K (1986) Chem Lett 1397Google Scholar
  56. 22.
    For the composition of glass used, see Sect 2.3.2Google Scholar
  57. 23.
    See Sect 2.1Google Scholar
  58. 24.
    Babb SE Jr (1963) Rev Modern Phys 35 No 2: 400CrossRefGoogle Scholar
  59. 25.
    For the 6$ cell, the glass container should be wound outside with a fishing lineGoogle Scholar
  60. 26.
    In our laboratory, many thermal-expansion high-pressure cells have survived in a refrigerator, most of them having been stored there for longer than 10 years!Google Scholar
  61. 27.
    A low field shift is defined by a negative σGoogle Scholar
  62. 28.
    a) Moriarty RM (1964) J Org Chem 29: 2748CrossRefGoogle Scholar
  63. b) Moriarty RM, Kliegman JM (1966) Tetrahedron Lett 891Google Scholar
  64. (c).
    Moriarty RM, Kliegman JM (1966) J Org Chem 31: 3007CrossRefGoogle Scholar
  65. 29.
    a) Winkler FK, Dunitz JD (1971) J Mol Biol 59: 169CrossRefGoogle Scholar
  66. (b).
    Smolikovä S, Havel M, Vasickovä S, Vitek A, Svoboda M, Blähä K (1974) Collect Czech Chem Commun 39: 293Google Scholar
  67. 30.
    le Noble WJ (1978) In: Keim H (ed) High pressure chemistry, Reidel, Dordrecht, p 325Google Scholar
  68. 31.
    a) Hauer J, Treml E, Lüdemann H-D, Mannschreck A (1982) J Chem Res (S) 14, (M) 253Google Scholar
  69. b) Hauer J, Treml E, Lüdemann H-D (1982) ibid (S) 40 (M) 501Google Scholar
  70. (c).
    Hauer H, Lüdemann H-D, Jaenicke R (1982) Z Naturforsch Teil C 37: 51Google Scholar
  71. 32.
    Yamada H, Miyata Y, Kinugasa T (1980) J Magn Reson 39: 309CrossRefGoogle Scholar
  72. 33.
    Suzuki H (1959) Bull Chem Soc Jpn 32: 1340CrossRefGoogle Scholar
  73. 34.
    Mayo RE, Goldstein JH (1966) Mol Phys 10: 301CrossRefGoogle Scholar
  74. 35.
    Yamada H, Itani C, Otsuka K (1977) J Am Chem Soc 99: 3572CrossRefGoogle Scholar
  75. 36.
    See also Yamada H, Onishi S, Yokoyama M, Sera A (1985) Bull Chem Soc Jpn 58: 1341CrossRefGoogle Scholar
  76. 37.
    The σw contribution to the proton chemical shift arises from the weak van der Waals interaction between the resonating proton and solvent molecules. [38a, b] When the resonating proton is more strongly subjected to the van der Waals contacts with medium molecules, a greater σw contribution (i. e. a pronounced low field shift) should be expected. Since the pressurization produces an increase in the van der Waals contacts, the σwcontribution would be generally enhanced at high pressure, giving rise to a low field contribution to the pressure shiftGoogle Scholar
  77. 38.
    a) Buckingham AD, Schaefer T, Schneider WG (1960) J Chem Phys 32: 1227CrossRefGoogle Scholar
  78. (b).
    Rummens FHA, Raynes WT, Bernstein HJ (1968) J Phys Chem 72: 2111CrossRefGoogle Scholar
  79. 39.
    Bondi A (1964) J Phys Chem 68: 441CrossRefGoogle Scholar
  80. 40.
    Taft RW Jr (1965) In: Newman MS (ed) Steric effects in organic chemistry, John Wiley, New York, p 565Google Scholar
  81. 41.
    Charton M (1975) J Am Chem Soc 97: 1552CrossRefGoogle Scholar
  82. 42.
    Waugh JS, Fessenden RW (1957) J Am Chem Soc 79: 846CrossRefGoogle Scholar
  83. 43.
    Kato M, Higashi M, Taniguchi Y (1988) J Chem Phys 89: 5417CrossRefGoogle Scholar
  84. 44.
    σΔ(P) = σ(P) - σ(1), where Ö(P) denotes the chemical shift from internal cyclohexane under a pressure of P MPa. A low field shift is defined by a negative ÖGoogle Scholar
  85. 45.
    Yamada H, Ishihara T, Kinugasa T (1974) J Am Chem Soc 96: 1935CrossRefGoogle Scholar
  86. 46.
    Imashiro F, Oda M, Iida T, Yoshida Z, Tabushi I (1976) Tetrahedron Lett: 371Google Scholar
  87. 47.
    Yamada H, Kazuoka T, Sera A (1988) J Am Chem Soc 110: 7552CrossRefGoogle Scholar
  88. 48.
    a) Whalley E (1978) In: Keim H (ed) High presure chemistry, Reidel, Dordrecht, p 127 (b) Whalley E (1980) Rev Phys Chem Jpn 50: 119Google Scholar
  89. 49.
    Abraham RJ, Bretschneier E (1974) In: Orville-Thomas WJ (ed) Internal rotation in molecules, John Wiley, London, p 481Google Scholar
  90. 50.
    Gutowsky HS, Belford GG, McMahon PE (1962) J Chem Phys 36. 3353CrossRefGoogle Scholar
  91. 51.
    Christian SD, Grundnes J, Klaboe P (1976) J Chem Phys 65: 496CrossRefGoogle Scholar
  92. 52.
    a) Karplus M (1959) J Chem Phys 30: 11CrossRefGoogle Scholar
  93. (b).
    Barfield M, Grant DM (1965) Adv Magn Reson 1: 149Google Scholar
  94. 53.
    Chen JS, Shirts RB, Lin W-C (1986) J Phys Chem 90: 4970CrossRefGoogle Scholar
  95. 54.
    Taniguchi Y, Takaya H, Wong PTT, Whalley E (1981) J Chem Phys 75: 4815CrossRefGoogle Scholar
  96. 55.
    Takaya H, Taniguchi Y, Wong PTT, Whalley E (1981) J Chem Phys 75: 4823CrossRefGoogle Scholar
  97. 56.
    Abraham RJ, Cooper MA, Siverns TM, Swinton PF, Weder HG (1974) Org Magn Reson 6: 331CrossRefGoogle Scholar
  98. 57.
    In general, the error in AV arising from an uncertainty of J is considered to be smaller than that in AG because main saurces of the error should more or less cancel in the derivation of AVGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1990

Authors and Affiliations

  • Hiroaki Yamada
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKobe UniversityNada-ku, KobeJapan

Personalised recommendations