Skip to main content

Density Functional Calculations with Simulated Annealing — New Perspectives for Molecular Calculations

  • Conference paper
Supercomputer and Chemistry
  • 58 Accesses

Abstract

The structure of a molecule or solid can be determined by calculating the total energy of the system of ions and electrons for all geometries. We review the problems inherent in such calculations, and show that the combination of density functional calculations with molecular dynamics techniques addresses the main difficulties. The method is applied to structural determinations in sulphur clusters S n , where the ground state geometries are described very well. The method also gives interesting results in cases where there are structural changes involving large barriers (S 7 O), and small energy differences with energy barriers on a thermal scale (isomers of Se x S y ). As a final example, we discuss recent results on small phosphorus clusters, P n , n = 2, 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coulson C (1960) Rev Mod Phys 32 170

    Article  CAS  Google Scholar 

  2. Hoare MR, Mclnnes JA (1983) Adv Phys 32 791

    Article  CAS  Google Scholar 

  3. Wille LT, Vennik J (1985) J Phys A 18, L419, L1113

    Article  CAS  Google Scholar 

  4. Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness Freeman, San Francisco

    Google Scholar 

  5. Hohenberg P, Kohn W (1964) Phys Rev 136 B864

    Article  Google Scholar 

  6. Levy M (1979) Proc Nat Acad Sci USA 76 6062

    Article  CAS  Google Scholar 

  7. Kohn W, Sham LJ (1965) Phys Rev 140 A1133

    Article  Google Scholar 

  8. Gunnarsson O, Lundqvist BI (1976) Phys Rev 13 4274. See also Harris J, Jones RO (1974) J Phys F 4 1170

    Article  CAS  Google Scholar 

  9. Vosko S, Wilk L, Nusair M (1980) Can J Phys 58 1200

    Article  CAS  Google Scholar 

  10. For a recent survey of this formalism and some of its applications, see Jones RO, Gunnarsson O (1989) Rev Mod Phys 61 689

    Article  CAS  Google Scholar 

  11. For a discussion of 03, S02, SOS and S3, see Jones RO (1987) Adv Chem Phys 67 413 and references therein

    Article  CAS  Google Scholar 

  12. Jones RO (1985) J Chem Phys 82 325

    Article  CAS  Google Scholar 

  13. Jones RO (1986) J Chem Phys 84 318

    Article  CAS  Google Scholar 

  14. Rice JE, Amos RD, Handy NC, Lee TJ, Schaefer HF III (1986) J Chem Phys 85 963

    Article  CAS  Google Scholar 

  15. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220 671

    Article  CAS  Google Scholar 

  16. Sasaki GH, Hajek B (1988) J Assoc Comput Machin 35 387

    Google Scholar 

  17. Car R, Parrinello M (1985) Phys Rev Lett 55 2471

    Article  CAS  Google Scholar 

  18. Stillinger F, Weber TA, LaViolette RA (1986) J Chem Phys 85, 6460

    Article  CAS  Google Scholar 

  19. Donohue J (1974) The Structures of the Elements Wiley, New York, Chapters 8 [group V A] and 9 [group VI A]

    Google Scholar 

  20. Steudel R (1984) In: Müller A, Krebs B (eds) Studies in Inorganic Chemistry, Vol. 5, Elsevier, Amsterdam, p. 3

    Google Scholar 

  21. Steudel R, Strauss, EM (1984) Adv Inorg Chem Radiochem 28, 135

    Article  CAS  Google Scholar 

  22. Cooper R, Culka JV (1967) J Inorg Nucl Chem 29 1217

    Article  CAS  Google Scholar 

  23. Schmidt M, Wilhelm E (1970) Z Naturforsch 25 B 1348

    Google Scholar 

  24. Steudel R, Strauss EM (1987) In: The Chemistry of Inorganic Homo- and Heterocycles, Vol. 2, Academic, London, p. 769

    Google Scholar 

  25. Steudel R, Laitinen R (1982) Topics in Current Chemistry, 102, 177

    CAS  Google Scholar 

  26. Bitterer H (ed) (1984) Selenium: Gmelin Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband B2. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Laitinen R, Niinistö L, Steudel R (1979) Acta Chem Scand A 33 737

    Article  Google Scholar 

  28. Bachelet GB, Hamann DR, Schlüter M (1982) Phys Rev B 26, 4199

    Article  CAS  Google Scholar 

  29. Hohl D, Jones RO, Car R, Parrinello M (1988) J Chem Phys 89 6823

    Article  CAS  Google Scholar 

  30. Hohl D, Jones RO, Car R, Parrinello M (1989) J Am Chem Soc 111 825

    Article  CAS  Google Scholar 

  31. Jones RO, Hohl D (1990) J Am Chem Soc (in press)

    Google Scholar 

  32. Laitinen R, Pakkanen T (1983) J Mol Struct (Theochem) 91 337; (1985) J Mol Struct (Theochem) 124 293

    Article  Google Scholar 

  33. Maekawa T, Yokokawa T, Niwa K (1973) Bull Chem Soc Japan 46 761

    Article  CAS  Google Scholar 

  34. Drowart J, Smoes S (1977) J Chem Soc, Faraday Trans II 73, 1755

    Article  CAS  Google Scholar 

  35. Woodcock LV (1971) Chem Phys Lett 10 257

    Article  CAS  Google Scholar 

  36. Laitinen RS, Pakkanen, TP (1987) Inorg Chem 26 2598

    Article  CAS  Google Scholar 

  37. For a discussion of the relationship between core size, valence eigenfunctions and bond strengths, see Harris J, Jones RO (1979) Phys Rev A 19 1813

    Article  CAS  Google Scholar 

  38. Eysel HH, Sunder S (1979) Inorg Chem 79 2626

    Article  Google Scholar 

  39. Corbridge DEC (1974) The Structural Chemistry of Phosphorus, Elsevier, Amsterdam

    Google Scholar 

  40. Corbridge DEC (1985) Phosphorus. An Outline of its Chemistry, Bio-chemistry and Technology ( Third Edition ). Elsevier, Amsterdam

    Google Scholar 

  41. Kerwin L (1954) Can J Phys 32 757

    Article  CAS  Google Scholar 

  42. Carette JD, Kerwin L (1961) Can J Phys 39 1300

    Article  Google Scholar 

  43. Bock H, Müller H (1984) Inorg Chem 23 4365

    Article  CAS  Google Scholar 

  44. Raghavachari K, Haddon RC, Binkley JS (1985) Chem Phys Lett 122 219

    Article  CAS  Google Scholar 

  45. Ahlrichs R, Brode S, Ehrhardt C (1985) J Am Chem Soc 107 7260

    Article  CAS  Google Scholar 

  46. Martin TP (1986) Z Phys D 3 221

    Article  Google Scholar 

  47. Jones RO, Hohl D (submitted to J Chem Phys)

    Google Scholar 

  48. Thurn H, Krebs H (1969) Acta Cryst B 25 125.

    Article  CAS  Google Scholar 

  49. Eaton PE, Cole TW Jr (1964) J Am Chem Soc 86 962, 3157

    Article  CAS  Google Scholar 

  50. Cassar L, Eaton PE, Halpern J (1970) J Am Chem Soc 92 6366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jones, R.O., Hohl, D. (1990). Density Functional Calculations with Simulated Annealing — New Perspectives for Molecular Calculations. In: Harms, U. (eds) Supercomputer and Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75917-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75917-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52915-6

  • Online ISBN: 978-3-642-75917-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics