Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 101))

Abstract

Hypoxia is the fundamental stimulus for erythropoietin (Ep) production (Fisher 1983, 1988; Kurz et al. 1986). Our model for kidney Ep production postulates that an oxygen deficit initiates a cascade of events which lead to increased biosynthesis and secretion of Ep. The physiologic and pathophysiologic control involved is still not clearly understood. However, there is a primary oxygen-sensing reaction in the kidney which is triggered by a reduction in ambient partial pressure of oxygen (high altitude, hypobaria); a decreased passage of oxygen across the pulmonary endothelium (obstructive lung disease); a decrease in the oxygen-carrying capacity of hemoglobin (anemia); a decrease in oxygen utilization by the kidney (cobalt) (Fisher and Birdwell 1961); and a decrease in the flow of blood to the kidney (renal artery constriction, atherosclerosis, thrombosis).

Supported by USPHS grant DK13211 and Private funds

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beauchamp C, Fridovich I (1970) A mechanism for the production of ethylene from methional: the generation of hydroxyl radicals by xanthine oxidase. J Biol Chem 245:4641

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. SOD Biochem J 222:345–360

    Google Scholar 

  • Daly JW (1982) Receptors: targets for future drugs. J Med Chem 25:197–207

    Article  PubMed  CAS  Google Scholar 

  • Dionisi O, Galeotti T, Terranova T, Azzi A (1975) Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim Biophys Acta 403:292

    PubMed  CAS  Google Scholar 

  • Fink GD, Fisher JW (1977) Stimulation of erythropoiesis by beta adrenergic agonists. II. Mechanism of action. J Pharmacol Exp Ther 202:199–208

    PubMed  CAS  Google Scholar 

  • Fink GD, Paulo LG, Fisher JW (1975) Effects of beta-adrenergic blocking agents on erythropoietin production in rabbits exposed to hypoxia. J Pharmacol Exp Ther 193:176–181

    PubMed  CAS  Google Scholar 

  • Fisher JW (1983) Control of erythropoietin production. Proc Soc Exp Biol Med 173:289–305

    PubMed  CAS  Google Scholar 

  • Fisher JW (1988) Pharmacologic modulation of erythropoietin production. Annu Rev Pharmacol Toxicol 28:101–122

    Article  PubMed  CAS  Google Scholar 

  • Fisher JW, Birdwell BJ (1961) The production of an erythropoietin factor by the in situ perfused kidney. Acta Haematol (Basel) 26:224–232

    Article  CAS  Google Scholar 

  • Fisher JW (1991) Regulation of erythropoietin (Ep) production. In: Handbook of renal physiology. Oxford University Press, New York (in press)

    Google Scholar 

  • Goldberg MA, Glass A, Cunningham JM, Bunn HF (1987) The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84:7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Guilbert LJ, Iscove NN (1976) Partial replacement of serum by selenite, transferrin, albumin and lecithin in haemopoietic cell cultures. Nature 263:594–595

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara M, Pincus SM, Chen I-L, Beckman BS, Fisher JW (1985) Effects of dibutyryl adenosine 3’-5’-cycHc monophosphate on erythropoietin production in human renal carcinoma cultues. Blood 66:714–17

    PubMed  CAS  Google Scholar 

  • Hagiwara M, Nagakura K, Ueno M, Fisher JW (1987) Inhibitory effects of tetra-decanoylphorbol acetate and diacylglycerol on erythropoietin production in human renal carcinoma cell cultures. Exp Cell Res 173:129–136

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Sun GY (1986) Cerebral ischemia induced quantitative changes in rat membrane lipids involved in phosphoinositide metabohsm. Neurochem Int 9:185–190

    Article  PubMed  CAS  Google Scholar 

  • Jones DP (1986) Renal metabolism during normoxia, hypoxia, and ischemic injury. Annu Rev Physiol 48:33–50

    Article  PubMed  CAS  Google Scholar 

  • Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499

    Article  PubMed  CAS  Google Scholar 

  • Kurz AW, Jelkmann A, Pfuhl K, Malmstrom K, Bauer C (1986) Erythropoietin production by fetal mouse liver cells in response to hypoxia and adenylate cyclase. Endocrinology 118:567–572

    Article  Google Scholar 

  • Londos C, Wolff J (1988) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74:5482–5486

    Article  Google Scholar 

  • Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  • McCord JM (1985) Oxygen derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    Article  PubMed  CAS  Google Scholar 

  • Miller WL, Thomas RA, Berne RM, Rubia R (1978) Adenosine production in the ischemic kidney. Circ Res 43:390–397

    PubMed  CAS  Google Scholar 

  • Nelson JA, Drake S (1984) Potentiation of methotrexate toxicity by dipyridamole. Cancer Res 44:2493–2496

    PubMed  CAS  Google Scholar 

  • Nelson PK, Brookins J, Fisher JW (1983) Erythropoietin effects of prostacyclin (PGI2) and its metabolite 6-keto-prostaglandin (PGi) E. J Pharmacol Exp Ther 226:493–499

    PubMed  CAS  Google Scholar 

  • Nielsen OJ, Schuster SJ, Kaufman R, Erslev AJ, Caro J (1987) Regulation of erythropoietin production in a human hepatoblastoma cell line. Blood 70: 1904–1909

    PubMed  CAS  Google Scholar 

  • Osswald H, Schmitz HJ, Kemper R (1977) Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and post-ischemic recirculation. Pflugers Arch 371:45

    Article  PubMed  CAS  Google Scholar 

  • Paul P, Rothmann SA, Meagher RC (1988) Modulation of erythropoietin production by adenosine. J Lab CHn Med 112:168–173

    CAS  Google Scholar 

  • Rodgers GM, Fisher JW, George WJ (1975a) Increase in hematocrit hemoglobin and red cell mass in normal mice after treatment with cyclic AMP. Proc Soc Exp Biol Med 148:380–382

    PubMed  CAS  Google Scholar 

  • Rodgers GM, Fisher JW, George JW (1975b) The role of renal adenosine 3’,5’-monophosphate in the control of erythropoietin production. Am J Med 58:31

    Article  PubMed  CAS  Google Scholar 

  • Rodgers GM, Fisher JW, George WJ (1976) Renal cyclic GMP and cholinergic mechanisms in erythropoietin production. Life Sci 17:1807–1814

    Article  Google Scholar 

  • Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA 78:3363–3367

    Article  PubMed  CAS  Google Scholar 

  • Shah SV (1984) Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content in isolated rat glomeruli. J Clin Invest 74:393–401

    Article  PubMed  CAS  Google Scholar 

  • Sherwood JB, Burns ER, Shouval D (1987) Stimulation by cAMP of erythropoietin secretion by an established human renal carcinoma cell line. Blood 69:1053–1057

    PubMed  CAS  Google Scholar 

  • Smith RJ, Fisher JW (1976) Neutral protease activity and erythropoietin production in the rat after cobalt administration. J Pharmacol Exp Ther 197:714–722

    PubMed  CAS  Google Scholar 

  • Spielman WS (1984) Antagonistic effect of theophylline on the adenosine-induced decrease in renin release. Am J Physiol 247:F246-F251

    PubMed  CAS  Google Scholar 

  • Strosznajder J, Wikiel H, Sun GY (1987) Effects of cerebral ischemia on [3H] inositol lipids and [3H] inositol phosphate of gerbil brain and subcellular fractions. J Neurochem 48:943–949

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Pereyra LH, Simmons RL, Najarían JS (1974) Effects of allopurinol on the preservation of ischemic kidneys perfused with plasma or plasma substitutes. Ann Surg 180:780–782

    Article  PubMed  CAS  Google Scholar 

  • Ueno M, Brookins J, Beckman BS, Fisher JW (1988a) Effects of reactive oxygen metabolites on erythropoietin production in renal carcinoma cells. Biochem Biophys Res Commun 154:773–780

    Article  PubMed  CAS  Google Scholar 

  • Ueno M, Brookins J, Beckman BS, Fisher JW (1988b) Effects of reactive oxygen metabolites on erythropoietin production in renal carcinoma cells. Biochem Biophys Res Commun 154:773–780

    Article  PubMed  CAS  Google Scholar 

  • Yasuda H, Kishiro K, Izumi N, Nakanishi M (1985) Biphasic liberation of arachidonic and stearic acid during cerebral ischemia. J Neurochem 45:168–172

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, J.W., Nakashima, J. (1992). Kidney Regulation of Erythropoietin Production. In: Fisher, J.W. (eds) Biochemical Pharmacology of Blood and Bloodforming Organs. Handbook of Experimental Pharmacology, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75865-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75865-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75867-6

  • Online ISBN: 978-3-642-75865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics