Skip to main content

In Vivo Behavior of Liposomes: Interactions with the Mononuclear Phagocyte System and Implications for Drug Targeting

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 100))

Abstract

Several years before Bangham et al. (1965a,b) formulated the concept of the liposome as a closed compartment separated from its aqueous environment by one or more lipid bilayers, and even longer before GREGORIADIS and Ryman (1972a) first suggested the use of such liposomes as a potential drug carrier system, intravenous administration of aqueous dispersions of phospholipids was proposed as an anti-atherogenic treatment, facilitating the elimination of cholesterol from the body (Friedman et al. 1957). Even before that, a patent was obtained for the creation of a local depot of steroids, created by applying phospholipid/steroid mixtures, which clearly must have had the structural features of what we now call liposomes (Johnson 1934, cited according to Pagano and Weinstein 1978). However, the enormous boost in liposome literature that we have seen in more recent years did not start before the early 1970s, when Gregoriadis and Ryman (1972b) proposed the enzyme-loaded liposome as an approach to the treatment of (lysosomal) storage diseases. Ever since then, we have seen an exponential growth of literature on the potentials of the liposome as a drug carrier system, culminating over the past 3 or 4 years in a large number of reports on clinical trials concerning a limited number of applications. Much of the work published on liposomes deals with their in vivo behavior, both from a fundamental point of view and with respect to direct applications. Although a considerable share of this latter work serves to moderate the over-enthusiastic conclusions frequently drawn from in vitro experiments with liposomes and cells, it cannot be denied that sometimes spectacular results are reported, mostly on the therapeutic utility of liposomes in animal models of disease.

The work from this laboratory referred to was financially supported by grants from the Netherlands Organization for Scientific Research, the Dutch Cancer Foundation and Ciba Geigy AG, Basel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abra RM, Hunt CA (1981) Liposome disposition in vivo. III. Dose and vesicle size effects. Biochim Biophys Acta 666: 493–503

    Google Scholar 

  • Abra RM, Bosworth ME, Hunt CA (1980) Liposome disposition in vivo: effects of predosing with liposomes. Res Commun Chem Pathol Pharmacol 29: 349–359.

    PubMed  CAS  Google Scholar 

  • Abra RM, Hunt CA, Fu KK, Peters JH (1983) Delivery of therapeutic doses of doxorubicin to the mouse lung using lung-accumulating liposomes proves unsuccessful. Cancer Chemother Pharmacol 11: 98–101

    PubMed  CAS  Google Scholar 

  • Abraham W, Downing DT (1990) Interaction between corneocytes and stratum corneum lipid liposomes in vitro. Biochim Biophys Acta 1021: 119–125

    PubMed  CAS  Google Scholar 

  • Abraham W, Wertz PW, Downing DT (1988) Effect of epidermal acylglucosylcer-amides and acylceramides on the morphology of liposomes prepared from stratum corneum lipids. Biochim Biophys Acta 939: 403–408

    PubMed  CAS  Google Scholar 

  • Agarwal K, Bali A, Gupta CM (1986a) Influence of phospholipid structure on the stability of liposomes in serum. Biochim Biophys Acta 856: 36–40

    PubMed  CAS  Google Scholar 

  • Agarwal K, Bali A, Gupta CM (1986b) Effect of phospholipid structure on stability and survival times of liposomes in circulation. Biochim Biophys Acta 883: 468–475

    PubMed  CAS  Google Scholar 

  • Allen TM (1981) A study of phospholipid interactions between high density lipo–proteins and small unilamellar vesicles. Biochim Biophys Acta 640: 385–397

    PubMed  CAS  Google Scholar 

  • Allen TM (1988) Toxicity of drug carriers to the mononuclear phagocyte system. Adv Drug Delivery Rev 2: 55–67

    CAS  Google Scholar 

  • Allen TM (1989) Stealth liposomes: avoiding reticuloendothelial uptake. In: Lopez-Berestein G, Fidler IJ (eds) Liposomes in the therapy of infectious diseases and cancer. Liss, New York, p 405

    Google Scholar 

  • Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223: 42–46

    PubMed  CAS  Google Scholar 

  • Allen TM, Cleland LG (1980) Serum-induced leakage of liposome contents. Biochim Biophys Acta 597: 418–426

    PubMed  CAS  Google Scholar 

  • Allen TM, Everest JM (1983) Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drugs in rats. J Pharmacol Exp Ther 226: 539–544

    PubMed  CAS  Google Scholar 

  • Allen TM, Mehra T (1989) Recent advances in sustained release of antineoplastic drugs using liposomes which avoid uptake into the reticuloendothelial system. Proc West Pharmacol Soc 32: 111–114

    PubMed  CAS  Google Scholar 

  • Allen TM, McAllister L, Mausolf S, Gyorffy E (1981) Liposome-cell interactions. A study of the interactions of liposomes containing entrapped anti-cancer drugs with the EMT 6, S 49 and AEX (transport-deficient) cell lines. Biochim Biophys Acta 643: 346–362

    PubMed  CAS  Google Scholar 

  • Allen TM, Ryan JL, Papahadjopoulos D (1985) Gangliosides reduce leakage of aqueous space markers from liposomes in the presence of human plasma. Biochim Biophys Acta 818: 205–210

    PubMed  CAS  Google Scholar 

  • Allen TM, Hansen C, Rutledge J (1989) Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 981: 27–35

    PubMed  CAS  Google Scholar 

  • Alving CR (1987) Liposomes as carriers for vaccines In: Ostro MJ (ed) Liposomes from biophysics to therapeutics. Dekker, New York, p 195

    Google Scholar 

  • Alving CR (1988) Macrophages as targets for delivery of Iiposome-encapsulated antimicrobial agents. Adv Drug Delivery Rev 2: 107–128

    Google Scholar 

  • Alving CR, Steck EA, Chapman WL Jr, Waits VB, Hendricks LD, Swartz GM Jr, Hanson WL (1978) Therapy of leishmaniasis: superior efficacies of Iiposome-encapsulated drugs. Proc Natl Acad Sci USA 75: 2959–2963

    PubMed  CAS  Google Scholar 

  • Ashwell G, Morell AG (1974) The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 41: 99–128

    PubMed  CAS  Google Scholar 

  • Baldeschwieler JD (1985) Phospholipid vesicle targeting using synthetic glycolipid and other determinants. Ann NY Acad Sci 446: 349–367

    PubMed  CAS  Google Scholar 

  • Bali A, Dhawan S, Gupta CM (1983) Stability of liposomes in the circulation is markedly enhanced by structural modification of their phospholipid component. FEBS Lett 154: 373–377

    PubMed  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965a) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13: 238–252

    PubMed  CAS  Google Scholar 

  • Bangham AD, Standish MM, Weissmann G (1965b) The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 13: 253–259

    PubMed  CAS  Google Scholar 

  • Barber RF, Shek PN (1986) Liposomes and tear fluid. I. Release of vesicle-entrapped carboxyfluorescein. Biochim Biophys Acta 879: 157–163

    Google Scholar 

  • Beaumier PL, Hwang KJ (1983) Effect of liposome size on the degradation of bovine sphingomyelin/cholesterol liposomes in the mouse liver. Biochim Biophys Acta 731: 23–30

    PubMed  CAS  Google Scholar 

  • Bisgaier CL, Siebenkas MV, Williams KJ (1989) Effects of apolipoproteins A-IV and A-I on the uptake of phospholipid liposomes by hepatocytes. J Biol Chem 264: 862–866

    PubMed  CAS  Google Scholar 

  • Black CDV, Gregoriadis G (1976) Interaction of liposomes with blood plasma proteins. Biochem Soc Trans 4: 253–256

    PubMed  CAS  Google Scholar 

  • Black CDV, Watson GJ, Ward RJ (1977) The use of Pentostam liposomes in the chemotherapy of experimental leishmaniasis. Trans R Soc Trop Med Hyg 71: 550–552

    PubMed  CAS  Google Scholar 

  • Blumenthal R, Ralston E, Dragsten P, Leserman LD, Weinstein JN (1982) Lipid vesicle–cell interactions: analysis of a model for transfer of contents from adsorbed vesicles to cells. Membr Biochem 4: 283–303

    PubMed  CAS  Google Scholar 

  • Bonventre PF, Gregoriadis G (1978) Killing of intraphagocytic Staphylococcus aureus by dihydrostreptomycin entrapped within liposomes. Antimocrob Agents Chemother 13: 1049–1051

    CAS  Google Scholar 

  • Brown PM, Silvius JR (1990) Hechanisms of delivery of liposome-encapsulated cytosine arabinoside to CV-1 cells in vitro. Fluorescent and cytohoxiciby studies. Biochim Biophys Acta 1023: 341–351

    Google Scholar 

  • Connor J, Huang L (1985) Efficient cytoplasmic delivery of a fluorescent dye by pH-sensitive immunoliposomes. J Cell Biol 101: 582–589

    PubMed  CAS  Google Scholar 

  • Coune A, Sculier JP, Fruehling J, Stryckmans P, Brassine C, Ghanem G, Laduron C, Atassi G, Ruysschaert JM, Hildebrand J (1983) IV administration of water-insoluble antimitotic compound entrapped in liposomes. Preliminary report on infusion of large volumes of liposomes to man. Cancer Treat Rep 67: 1031–1033

    Google Scholar 

  • Daemen T, Veninga A, Roerdink FH, Scherphof GL (1986a) In vitro activation of rat liver macrophages to tumoricidal activity by free or liposome-encapsulated muramyl dipeptide. Cancer Res 46: 4330–4335

    PubMed  CAS  Google Scholar 

  • Daemen T, Veninga A, Scherphof GL, Roerdink FH (1986b) The activation of Kupffer cells to tumorcytotoxicity with immunomodulators encapsulated in liposomes. In: Kirn A, Knook DL, Wisse E (eds) Cells of the hepatic sinusoid. Kupffer Cell Foundation, Rijswijk, p 379

    Google Scholar 

  • Daemen T, Veninga A, Roerdink FH, Scherphof GL (1989) Conditions controlling tumor cytotoxicity of rat liver macrophages mediated by liposomal muramyl dipeptide. Biochim Biophys Acta 991: 145–151

    PubMed  CAS  Google Scholar 

  • Daemen T, Dontje BHJ, Veninga A, Scherphof GL, Oosterhuis JW (1990) Therapy of murine liver metastases by administration of MDP encapsulated in liposomes. Select Cancer Ther 6: 63–72

    CAS  Google Scholar 

  • Damen J (1982) Interactions of liposomes with plasma lipoproteins. PhD thesis, State University, Groningen, p 80

    Google Scholar 

  • Damen J, Waite M, Scherphof G (1979) The in vitro transfer of 14C-dimyristoyl phosphatidylcholine from liposomes to subfractions of human HDL as resolved by isoelectric focusing. FEBS Lett 105: 115–119

    PubMed  CAS  Google Scholar 

  • Damen J, Dijkstra J, Regts J, Scherphof G (1980) Effect of lipoprotein-free plasma on the interaction of human plasma high density lipoprotein with egg yolk phosphatidylcholine liposomes. Biochem Biophys Acta 620: 336–346

    Google Scholar 

  • Damen J, Regts J, Scherphof G (1981) Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins: dependence on cholesterol and phospholipid composition. Biochem Biophys Acta 665: 538–545

    PubMed  CAS  Google Scholar 

  • Damen J, Regts J, Scherphof G (1982) Transfer of phosphatidylcholine between liposomes and human plasma high density lipoprotein: partial purification of a transfer-stimulating plasma factor using a rapid transfer assay. Biochem Biophys Acta 712: 444–452

    PubMed  CAS  Google Scholar 

  • Das PK, Murray GL, Zirzow GC, Brady RO, Barranger JA (1985) Lectin-specific targeting of glucocerebrosidase to different liver cells via glycosylated liposomes. Biochem Med 33: 124–131

    PubMed  CAS  Google Scholar 

  • Dave J, Patel HM (1986) Differentiation in hepatic and splenic phagocytic activity during reticuloendothelial blockade with cholesterol-free and cholesterol-rich liposomes. Biochem Biophys Acta 888: 184–190

    PubMed  CAS  Google Scholar 

  • Derksen JTP, Scherphof GL (1985) An improved method for the covalent coupling of proteins to liposomes. Biochem Biophys Acta 814: 151–155

    CAS  Google Scholar 

  • Derksen JTP, Morselt HWM, Scherphof GL (1987) Processing of different liposome markers after in vitro uptake of immunoglobulin-coated liposomes by rat liver macrophages. Biochem Biophys Acta 931: 33–40

    PubMed  CAS  Google Scholar 

  • Derksen JTP, Baldeschwieler JD, Scherphof GL (1988a) In vivo stability of ester-and ether-linked phospholipid-containing liposomes as measured by perturbed angular correlation spectroscopy. Proc Natl Acad Sci USA 85: 9768–9772

    PubMed  CAS  Google Scholar 

  • Derksen JTP, Morselt HWM, Scherphof GL (1988b) Uptake and processing of immunoglobulin–coated liposomes by subpopulations of rat liver macrophages. Biochem Biophys Acta 971: 127–136

    PubMed  CAS  Google Scholar 

  • Desmukh DS, Bear WD, Wisniewsky HM, Brockerhoff H (1978) Long-living liposomes as potential drug carriers. Biochem Biophys Res Commun 82: 328–334

    PubMed  CAS  Google Scholar 

  • Desmukh DS, Bear WD, Brockerhoff H (1981) Can intact liposomes be adsorbed in the gut? Life Sci 28: 239–242

    Google Scholar 

  • Dijkstra J, van Galen WJM, Hulstaert CE, Kalicharan D, Roerdink, FH, Scherphof GL (1984a) Interaction of liposomes with Kupffer cells in vitro. Exp Cell Res 150: 161–176

    PubMed  CAS  Google Scholar 

  • Dijkstra J, van Galen WJM, Scherphof GL (1984b) Effects of ammonium chloride and chloroquine on endocytic uptake of liposomes by Kupffer cells in vitro. Biochem Biophys Acta 804: 58–67

    PubMed  CAS  Google Scholar 

  • Dijkstra J, van Galen WJM, Scherphof G (1985b) Influence of liposome charge on the association of liposomes with Kupffer cells in vitro. Effects of divalent cations and competition with latex particles. Biochem Biophys Acta 813: 287–297

    Google Scholar 

  • Dijkstra J, van Galen WJM, Scherphof G (1985c) Effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of liposomes by Kupffer cells in culture. Biochem Biophys Acta 845: 34–42

    PubMed  CAS  Google Scholar 

  • Dragsten PR, Mitchell DB, Covert G, Baker T (1987) Drug delivery using vesicles targeted to the hepatic asialoglycoprotein receptor. Biochem Biophys Acta 926: 27–279

    Google Scholar 

  • Duzgunes N, Straubinger RM, Baldwin PA, Friend DS, Papahadjopoulos D (1985) Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry 24: 3091–3098

    PubMed  CAS  Google Scholar 

  • Ellens H, Morselt H, Scherphof G (1981) In vivo fate of large unilamellar sphingomyelin/cholesterol liposomes after intraperitoneal and intravenous injection into rats. Biochim Biophys Acta 674: 10–18

    PubMed  CAS  Google Scholar 

  • Ellens H, Mayhew E, Rustum YM (1982) Reversible depression of the reticuloendothelial system by liposomes. Biochim Biophys Acta 714: 479–485

    PubMed  CAS  Google Scholar 

  • Ellens H, Morselt H, Dontje BHJ, Kalicharan D, Hulstaert CE, Scherphof GL (1983) Effects of liposome dose and the presence of lymphosarcoma cells on bloodclearance and tissue distribution of large unilamellar liposomes in mice. Cancer Res 43: 2927–2934

    PubMed  CAS  Google Scholar 

  • Ellens H, Bentz J, Szoka FC (1985) H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry 24: 3099–3106

    PubMed  CAS  Google Scholar 

  • Eppstein DA, Marsh YV, van der Pas MA, Feigner PF, Schreiber AB (1985) Biological activity of liposome-encapsulated murine interferon-gamma is mediated by a cell membrane receptor. Proc Natl Acad Sci USA 82: 3688–3692

    PubMed  CAS  Google Scholar 

  • Eppstein DA, van der Pas MA, Schryver BB, Feigner PL, Gloff CA, Soike KF (1986) Controlled release and localized targeting of interferons. In: Davis SS, Ilium L, Tomlinson E (eds) Delivery systems for peptide drugs. Plenum, New York, p 227

    Google Scholar 

  • Feigner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84: 7413–7417

    Google Scholar 

  • Fichtner I, Reszka R, Elbe B, Arndt D (1981) Therapeutic evaluation of liposome-encapsulated daunoblastin in murine tumor models. Neoplasma 28: 141–149

    PubMed  CAS  Google Scholar 

  • Fidler IJ (1980) Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines. Science 208: 1469–1471

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Sone J, Fogler WE, Barnes ZL (1981) Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyl dipeptide. Proc Natl Acad Sci USA 78: 1680–1684

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Sone S, Fogler WE, Smith D, Braun DG, Tarcsay L, Gisler RJ, Schroit A (1982) Efficacy of liposomes containing a lipophilic muramyl dipeptide derivative for activating the tumoricidal properties of alveolar macrophages in vivo. J Biol Response Mod 1: 43–55

    CAS  Google Scholar 

  • Fogler WE, Fidler IJ (1986) The activation of tumoricidal properties in human blood monocytes by muramyl dipeptide requries specific intracellular interaction. J Immunol 136: 2311–2317

    PubMed  CAS  Google Scholar 

  • Forssen EA, Tokes ZA (1981) Use of anionic liposomes for the reduction of chronic doxorubicin-induced cariotoxicity. Proc Natl Acad Sci USA 78: 1873–1877

    PubMed  CAS  Google Scholar 

  • Fraley R, Subramani S, Papahadjopoulos D (1980) Introduction of liposome-encapsulated SV40 DNA into cells: effect of vesicle composition and incubation conditions. J Biol Chem 255: 10431–10435

    PubMed  CAS  Google Scholar 

  • Fraley R, Straubinger RM, Rule G, Springer E, Papahadjopoulos D (1981) Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficacy of delivery related to liptfl composition and incubation conditions. Biochemistry 20: 6978–6987

    PubMed  CAS  Google Scholar 

  • Fraser-Smith EB, Eppstein DA, Larsen MA, Mattews TR (1983) Protective effect of a muramyl dipeptide analog encapsulated in or mixed with liposomes against Candida albicans infection. In feet Immun 39: 172–178

    Google Scholar 

  • Freise J, Mueller WH, Broelsch C, Schmidt FW (1980) In vivo distribution of liposomes between parenchymal and non-parenchymal cells in rat liver. Biomedicine 32: 118–123

    PubMed  CAS  Google Scholar 

  • Freise J, Mueller WH, Magerstedt P (1981) Uptake of liposomes and sheep red blood cells by the liver and spleen of rats with normal and decreased function of the reticuloendothelial system. Res Exp Med 178: 263–269

    CAS  Google Scholar 

  • Friedman M, Byers SO, Rosenman RH (1957) Resolution of aortic atherosclerotic infiltration in the rabbit by phosphatide infusion. Proc Soc Exp Biol Med 95: 586–588

    PubMed  CAS  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85: 6949–6953

    PubMed  CAS  Google Scholar 

  • Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z (1982) Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res 42: 4734–4739

    PubMed  CAS  Google Scholar 

  • Gabizon A, Meshorer A, Barenholz Y (1986) Comparative long-term study of the toxicities of free and liposome-associated doxorubicin in mice after intravenous administration. JNCI 77: 459–469

    PubMed  CAS  Google Scholar 

  • Gabizon A, Shiota R, Papahadjopoulos D (1989a) Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation time. JNCI 18: 1484–1488

    Google Scholar 

  • Gabizon A, Sulkes A, Peretz T, Druckmann S, Goren D, Amselem S, Barenholz Y (1989b) Liposome-associated doxorubicin: preclinical pharmacology and exploratory clinical phase. In: Lopez-Berestein G, Fidler IJ (eds) Liposomes in the therapy of infectious diseases and cancer. Liss, New York, p 391

    Google Scholar 

  • Gabizon A, Peretz T, Sulkes A, Amselem S, Ben-Yosef R, Catane R, Biran S, Barenholz Y (1900) Systemic administration of doxorubicin-containing liposomes in cancer patients: a phase I study. Eur J Cancer Clin Oncol (in press)

    Google Scholar 

  • Ghosh P, Das PK, Bachhawat BK (1982) Targeting of liposomes towards different cell types of rat liver through the involvement of liposomal surface glycosides. Arch Biochem Biophys 213: 266–270

    PubMed  CAS  Google Scholar 

  • Gilbreath MJ, Nacy CA, Hoover DL, Alving CR, Swartz GM, Meltzer MS (1985) Macrophage activation for microbicidal activity against Leishmania major: inhibition of lymphokine activation by phosphatidylcholine-phosphatidylserine liposomes. J Immunol 134: 3420–3425

    PubMed  CAS  Google Scholar 

  • Gilbreath MJ, Hoover DL, Alving CR, Swartz GM, Meltzer MS (1986) Inhibition of lymphokine-induced macrophage microbicidal activity against Leishmania major by liposomes: characterization of the physicochemical requirements for liposome inhibiton. J Immunol 137: 1681–1687

    PubMed  CAS  Google Scholar 

  • Gilbreath MJ, Fogler WE, Swartz GM, Alving CR, Meltzer MS (1989) Inhibition of interferon gamma-induced macrophage microbicidal activity agaisnt Leishmania major by liposomes: Inhibition is dependent upon composition of phospholipid headgroups and fatty acids. Int J Immunopharmacol 11: 103–110

    Google Scholar 

  • Gisler RH, Schumann G, Sackmann W, Pericin C, Tarcsay L, Dietrich FM (1982) A novel muramyl peptide, MTP–PE: profile of biological activities. In: Yamamura S, Kotani S (eds) Immunomodulation by microbial products and related synthetic compounds. Excerpta Medica, Amsterdam, p 167

    Google Scholar 

  • Graybill JR, Craven PC, Taylor RL, Williams DM, Magee WE (1982) Treatment of murine cryptococcosis with liposome-associated amphotericin B. J Infect Dis 145: 748–752

    PubMed  CAS  Google Scholar 

  • Green PHR, Glickman RM, Riley JW, Quinet E (1980) Human apolipoprotein A-IV. Intestinal origin and distribution in plasma. J Clin Invest 65: 911–919

    Google Scholar 

  • Gregoriadis G, Neerunjun ED (1975) Homing of liposomes to target cells. Biochem Biophys Res Commun 65: 537–544

    PubMed  CAS  Google Scholar 

  • Gregoriadis G, Ryman BE (1972a) Fate of protein–containing liposomes injected into rats. An approach to the treatment of storage diseases. Dur J Biochem 24: 485–491

    Google Scholar 

  • Gregoriadis G, Ryman BE (1972b) Lysosomal localization of fructofuranosidase-containing liposomes injected into rats; implications in the treatment of genetic disorders. Biochem J 129: 123–133

    PubMed  CAS  Google Scholar 

  • Gregoriadis G, Senior J (1984) Targeting of small unilamellar liposomes to the galactose receptor in vivo. Biochem Soc Trans 12: 337–339

    PubMed  CAS  Google Scholar 

  • Grosse E, Kieda C, Nicolau C (1984) Flow cytofluorimetric investigations of the uptake by hepatocytes and spleen cells of targeted and untargeted liposomes injected intravenously into mice. Biochim Biophys Acta 805: 354–361

    PubMed  CAS  Google Scholar 

  • Gupta CM, Bali A, Dhawan S (1981) Modification of phospholipid structure results in greater stability of liposomes in serum. Biochim Biophys Acta 648: 192–198

    PubMed  CAS  Google Scholar 

  • Haensler J, Schuber F (1988) Preparation of neo-galactosylated liposomes and their interaction with peritoneal macrophages. Biochim Biophys Acta 946: 95–105

    PubMed  CAS  Google Scholar 

  • Hafeman DG, Lewis JT, McConnell HM (1980) Triggering of the macrophage and neutrophil respiratory burst by antibody bound to a spin-label phospholipid hapten in model lipid bilayer membranes. Biochemistry 19: 5387–5393

    PubMed  CAS  Google Scholar 

  • Heath TD, Fraley RT, Papahadjopoulos D (1980) Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab)2 to vesicle surface. Science 210: 539–541

    PubMed  CAS  Google Scholar 

  • Heath TD, Bragman K, Matthay K, Lopez NG, Papahadjopoulos D (1985a) Antibody-targeted liposomes: development of a cell-specific drug delivery system. In: Gregoriadis G, Poste G, Senior J, Trouet A (eds) Receptor-mediated targeting of drugs. Plenum, New York, p 407

    Google Scholar 

  • Heath TD, Lopez NG, Papahadjopoulos D (1985b) The effects of liposome size and surface charge on liposome-mediated delivery of methotrexate-aspartate in vitro. Biochim Biophys Acta 820: 74–84

    PubMed  CAS  Google Scholar 

  • Hemaker HC, Muller AD, Hermens WT, Zwaal RFA (1980) Oral treatment of haemophilia A by gastrointestinal absorption of factor VIII entrapped liposomally. Lancet 1: 70–71

    Google Scholar 

  • Hermetter A, Paltauf P (1983) Interaction between ether glycerophospholipid vesicles and serum proteins in vitro. Biochim Biophys Acta 752: 444–450

    PubMed  CAS  Google Scholar 

  • Ho RJY, Rouse BT, Huang L (1987) Target-sensitive immunoliposomes as an efficient drug carrier for antiviral activity. J Biol Chem 262: 13973–13978

    PubMed  CAS  Google Scholar 

  • Hoekstra D, Tomasini R, Scherphof G (1978) Interaction of phospholipid vesicles with rat hepatocytes in primary monolayer culture. Biochim Biophys Acta 542: 456–469

    PubMed  CAS  Google Scholar 

  • Hoekstra D, Tomasini R, Scherphof G (1980) Interactions of phospholipid vesicles with rat hepatocytes in vitro. Influence of vesicle-incorporated glycolipids. Biochim Biophys Acta 603: 336–346

    Google Scholar 

  • Hoekstra D, van Renswoude J, Tomasini R, Scherphof G (1981) Interaction of phospholipid vesicles with rat hepatocytes. Further characterization of vesicle-cell surface interaction; use of serum as a physiological modulator. Membr Biochem 4: 129–147

    Google Scholar 

  • Howard FD, Petty HR, McConnell HM (1982) Identification of phagocytosis-associated surface proteins of macrophages by two-dimensional gel electrophoresis. J Cell Biol 92: 283–288

    PubMed  CAS  Google Scholar 

  • Huang A, Huang L, Kennel SJ (1980) Monoclonal antibody covalently coupled with fatty acid; a reagent for in vitro liposome targeting. J Biol Chem 255: 8015–8018

    PubMed  CAS  Google Scholar 

  • Hughes BJ, Kennel S, Lee R, Huang L (1989) Monoclonal antibody targeting of liposomes to mouse lung in vivo. Cancer Res 49: 6214–6220

    PubMed  CAS  Google Scholar 

  • Hwang KJ, Luk K-FS, Beaumier PL (1980) Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: a kinetic study. Proc Natal Acad Sci USA 77: 4030–4034

    CAS  Google Scholar 

  • Hwang KJ, Luk KF, Beaumier P (1982) Volume of distribution and transcapillary passage of small unilamellar liposomes. Life Sci 31: 949–955

    PubMed  CAS  Google Scholar 

  • Ilium L, Davis SS (1984) The organ uptake of intravenously administered colloidal particles can be altered by using a non–ionic surfactant (Poloxamer 338). FEBS Lett 167: 79–82

    Google Scholar 

  • Ilium L, Hunneyball IM, Davis SS (1986) The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages. Int J Parm 29: 53–65

    Google Scholar 

  • Ilium L, Davis SS, Mueller RH, Mak E, West P (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized by a block polymer -poloxamine 908. Life Sci 40: 367–374

    Google Scholar 

  • Inamura N, Nakahara K, Kino T, Gotoh T, Kawamura L, Aoki H, Imanaka H, Sone S (1985) Activation of tumoricidal properties in macrophages and inhibition of experimentally induced murine metastases by a new synthetic acyltripeptide, FK- 565. J Biol Respanse Mod 4: 408–417

    CAS  Google Scholar 

  • Juliano RL, Lin G (1980) The interaction of plasma proteins with liposomes: protein binding and effects on the clotting and complement system. In: Tom BH, Six HR (eds) Liposomes and immunobiology. Elsevier/North-Holland, Amsterdam, p 49

    Google Scholar 

  • Juliano RL, Stamp D (1975) The effect of particle size and charge on the clearance rates of liposomes and liposome–encapsulated drugs. Biochem Biophys Res Commun 63: 651–65

    PubMed  CAS  Google Scholar 

  • Juliano RL, Grant CW, Barber KR, Kalp MA (1987) Mechanism of the selective toxicity of amphotericin B incorporated into liposomes. Mol Pharmacol 31: 1

    PubMed  CAS  Google Scholar 

  • Kao YJ, Juliano RL (1981) Interactions of liposomes with the reticuloendothelial system. Effects of reticuloendothelial blockade on the clearance of large unilamellar vesicles. Biochim Biophys Acta 677: 453–461

    Google Scholar 

  • Kempka G, Roos PH, Kolb-Bachofen V (1990) A membrane–associated form of C- reactive protein is the galactoside-specific receptor on rat liver Kupffer cells. J Immunol 144: 1004–1009

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Mayhew EG (1978) Properties and biological effects of liposomes and their uses in pharmacology and toxicology. CRC Crit Rev Toxicol 6: 25–79

    CAS  Google Scholar 

  • Kirby C, Gregoriadis G (1980) The effect of cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo. Life Sci 27: 2223–2230

    PubMed  CAS  Google Scholar 

  • Kirby C, Gregoriadis G (1981) Plasma-induced release of solutes from small unilamellar lipsomes is associated with pore formation in the bilayer. Biochem J 199: 251–254

    PubMed  CAS  Google Scholar 

  • Kirby C, Clarke J, Gregoriadis G (1980a) Effect of cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 186: 591–598

    PubMed  CAS  Google Scholar 

  • Kirby C, Clarke J, Gregoriadis G (1980b) Cholesterol content of small unilamellar liposomes controls phosphatidylcholine loss to high density lipoproteins in the presence of serum. FEBS Lett 111: 324–328

    PubMed  CAS  Google Scholar 

  • Koff WC, Showalter SD, Hampar B, Fidler IJ (1985) Protection of mice against fatal herpes simplex type 2 infection by liposomes containing muramyl tripeptide. Science 228: 495–497

    PubMed  CAS  Google Scholar 

  • Kolb–Bachofen V, Schlepper-Schaefer J, Vogell W, Kolb H (1982) Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer cells. Cell 21: 859–866

    Google Scholar 

  • Kuipers F, Spanjer HH, Havinga R, Scherphof GL, Vonk RJ (1986) Lipoproteins and liposomes as in vivo cholesterol vehicles in the rat: preferential use of cholesterol carried by small unilamellar liposomes for the formation of muricholic acids. Biochim Biophys Acta 876: 559–566

    PubMed  CAS  Google Scholar 

  • Lasch J, Wohlrab W (1986) Liposome-bound Cortisol: a new approach to cutaneous therapy. Biomed Biochim Acta 45: 1295–1299

    PubMed  CAS  Google Scholar 

  • Lazar G, van Galen M, Scherphof GL (1989) Gadoliniumchloride-induced shifts in intrahepatic distributions of liposomes. Biochim Biophys Acta 1011: 97–101

    PubMed  CAS  Google Scholar 

  • Leserman LD, Barbet J, Kourilsky F, Weinstein JN (1980) Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antobody or protein A. Nature 288: 602–604

    PubMed  CAS  Google Scholar 

  • Liu D, Huang L (1989a) Role of cholesterol in the stability of pH-sensitive, large unilamellar liposomes prepared by the detergent-dialysis method. Biochim Biophys Acta 981: 254–260

    PubMed  CAS  Google Scholar 

  • Lu D, Huang L (1989b) Small but not large, unilamellar liposomes composed of dioleoylphosphatidylethanolamine and oleic acid can be stabilized by human plasma. Biochemistry 28: 7700–7707

    Google Scholar 

  • Liu D, Zhou F, Huang L (1989) Characterization of plasma-stabilized liposomes composed of dioleoylphosphatidylethanolamine and oleic acid. Biochem Biophys Res Commun 162: 326–333

    PubMed  CAS  Google Scholar 

  • Lopez-Berestein G (1989) Treatment of systemic fungal infections with liposomal amphotericin B. In: Lopez-Berestein G, Fidler IJ (eds) Liposomes in the therapy of infectious diseases and cancer. Liss, New York, p 317

    Google Scholar 

  • Lopez-Berestein G, Fidler IJ (1989) Liposomes in the therapy of infectious diseases and cancer. Liss, New York UCLA symposia on molecular cellular biology, new series, vol 89

    Google Scholar 

  • Lopez-Berestein G, Mehta R, Hopfer RL, Mills K, Kasi L, Mehta K (1983) Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposome-encapsulated amphotericin B. J Infect Dis 147: 939–945

    PubMed  CAS  Google Scholar 

  • Lopez-Berestein G, Fainstein V, Hopfer R, Mehta K, Sullivan MP, Keating M, Rosenblum MG, Mehta R, Luna M, Hersh EM, Reuben J, Juliano RL, BodeyGP (1985) Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis 151: 704–710

    CAS  Google Scholar 

  • Mangat S, Patel HM (1985) Lymph node localization of non-specific antibody-coated liposomes. Life Sci 36: 1917–1925

    PubMed  CAS  Google Scholar 

  • Martin FJ, MacDonald RC (1974) Liposomes can mimic virus membranes. Nature 252: 161–163

    PubMed  CAS  Google Scholar 

  • Martin FJ, Hubbell WL, Papahadjopoulos D, (1981) Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab fragments via disulfide bonds. Biochemistry 20: 4229–4238

    PubMed  CAS  Google Scholar 

  • Matthay KK, Abai AM, Cobb S, Hong K, Papahadjopoulos D, Straubinger RM (1989) Role of ligand in antibody-directed endocytosis of liposomes by human T- leukemia cells. Cancer Res 49: 4879–4886

    PubMed  CAS  Google Scholar 

  • Mauk MR, Gamble RC, Baldeschwieler JD (1980) Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leukocytes in mice. Proc Natl Acad Sci USA 77: 4430–4434

    PubMed  CAS  Google Scholar 

  • Mayer LD, Tai LCL, Ko DSC, Masin D, Ginsberg RS, Cullis PR, Bally MB (1989) Influence of vesicle size, lipid composition and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res 49: 5922–5930

    PubMed  CAS  Google Scholar 

  • Mayhew E, Gotfredsen C, Schneider YJ, Trouet A (1980) Interaction of liposomes with cultured cellsa: effect of serum. Biochem Pharmacol 29: 877–886

    PubMed  CAS  Google Scholar 

  • Mayhew E, Rustum Y, Vail WJ (1983) Inhibition of liver metastase of M5076 tumor by liposome–entrapped adriamycin. Cancer Drug Delivery 1: 43–58

    PubMed  CAS  Google Scholar 

  • Mayhew EG, Goldrosen MH, Vaage J, Rustum YM (1987) Effects of liposome-entrapped doxorubicin on liver metastases of mouse colon carcinomas 26 and 38. 78: 707–713

    Google Scholar 

  • McDougall IR, Dunnick JK, McNamee MG, Kriss JP (1974) Distribution and fate of synthetic lipid vesicles in the mouse. A combined radionuclide and spin label study. Proc Natl Acad Sci USA 71: 3487–3491

    Google Scholar 

  • Mehta K, Lopez–Berestein G, Hersh G, Juliano RL (1982) Uptake of liposomes and Iiposome-encapsulated muramyl dipeptide by human peripheral blood monocytes. J Reticuloendothel Soc 32: 155–164

    CAS  Google Scholar 

  • Mehta R, Lopez-Berestein G, Hopfer RL, Mills K, Juliano RL (1984) Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta 770: 230–234

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Patel HM (1988) Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett 233: 143–147

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Patel HM (1989a) Differential properties of organ-specific serum opsonins for liver and spleen macrophages. Biochim Biophys Acta 984: 379–383

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Patel HM (1989b) Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes. Biochim Biophys Acta 984: 384–387

    PubMed  CAS  Google Scholar 

  • Muller CD, Schuber F (1989) Neo-mannosylated liposomes: synthesis and interaction with mouse Kupffer cells and resident peritoneal macrophages. Biochim Biophys Acta 986: 97–105

    PubMed  CAS  Google Scholar 

  • Munn MW, Parce JW (1982) Antibody-dependent phagocytosis of haptenated liposomes by human neutrophils is dependent on the physical state of the liposomal membrane. Biochim Biophys Acta 692: 101–108

    PubMed  CAS  Google Scholar 

  • Nayar R, Schroit AJ (1985) Generation of pH-sensitive liposomes:use of large unilamellar vesicles containing N-succinyldioleoylphosphatidylethanolamine. Biochemistry 24: 5967–5971

    PubMed  CAS  Google Scholar 

  • New RRC, Chance ML, Thomas SC, Peters W (1978) Antileishmanial activity of antimonials entrapped in liposomes. Nature 272: 55–56

    PubMed  CAS  Google Scholar 

  • New RRC, Black CDV, Parker RJ, Scherphof (1990) Liposomes in biological systems. In: New RRC (ed) Liposomes, a practical approach. IRL, Oxford, p 221

    Google Scholar 

  • Olson F, Mayhew E, Maslow D, Rustum Y, Szoka FC (1982) Characterization, toxicity and therapeutic efficacy of adriamycin encapsulated in liposomes. Eur J Cancer Clin Oncol 18: 167–176

    PubMed  CAS  Google Scholar 

  • Pabst MJ, Cummings NP, Shiba T, Kusomoto S, Kotani S (1980) Lipophilic derivative of muramyldipeptide is more active than muramyl dipeptide in priming macrophages to release superoxide anion. Infect Immun 29: 617

    PubMed  CAS  Google Scholar 

  • Pagano RE, Huang L (1975) Interactions of phospholipid vesicles with cultured mammalian cells. II. Studies of mechanism. J Cell Biol 67: 49–60

    Google Scholar 

  • Pagano RE, Weinstein JN (1978) Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng 7: 435–468

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Gabizon A (1987) Targeting of liposomes to tumor cells in vivo. Ann NY Acad Sci 507: 64–74

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Poste G, Mayhew E (1974) Cellular uptake of cyclic AMP captured within phospholipid vesicles and effect on cell growth behaviour. Biochim Biophys Acta 363: 404–418

    PubMed  CAS  Google Scholar 

  • Parker RJ, Priester ER, Sieber SM (1982a) Comparison of lymphatic uptake metabolism, excretion and biodistribution of free and liposome-entrapped [14C] cytosine-D-arabinofuranoside following intraperitoneal administration to rats. Drug Metab Dispos 10: 40–45

    PubMed  CAS  Google Scholar 

  • Parker RJ, Priester ER, Sieber SM (1982b) Effect of route of administration and liposome entrapment on the metabolism and disposition of adriamycin in the rat. Durg Metab Dispos 10: 499–504

    CAS  Google Scholar 

  • Patel HM, Wild AE (1988) Fc receptor–mediated transcytosis of IgG-coated Liposomes across epithelial barriers. FEBS Lett 234: 321–325

    PubMed  CAS  Google Scholar 

  • Patel HM, Tuzel NS, Ryman BE (1983a) Inhibitory effect of cholesterol on the uptake of liposomes by liver and spleen. Biochim Biophys Acta 761: 142–151

    PubMed  CAS  Google Scholar 

  • Patel KR, Li MP, Baldeschwieler JD (1983b) Suppression of liver uptake of liposomes by dextran sulfate 500. Proc Natl Acad Sci USA 80: 6518–6522

    PubMed  CAS  Google Scholar 

  • Patel HM, Boodle KM, Vaughan–Jones R (1984) Assessment of the potential use of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta 801: 76–86

    CAS  Google Scholar 

  • Patel HM, Tuzel NS, Stevenson WS (1985) Intracellular digestion of saturated and unsaturated phospholipid liposomes by mucosal cells. Possible mechanism of transport of liposomally entrapped macromolecules across the isolated vascularly perfused rabbit ileum. Biochim Biophys Acta 839: 40–49

    Google Scholar 

  • Peeters PAM, Brunink BG, Eling WMC, Crommelin DJA (1989) Therapeutic effect of chloroquin (CQ)-containing immunoliposomes in rats infected with Plasmodium berghei parasitized mouse red blood cells: comparison with combinations of antibodies and CQ or liposomal CQ. Biochim Biophys Acta 981: 269–276

    PubMed  CAS  Google Scholar 

  • Phillips NC, Tsao M-S (1989) Inhibition of murine hepatic tumor growth by liposomes containing a lipophilic muramyl dipeptide. Cancer Immunol Immunother 28: 54–58

    PubMed  Google Scholar 

  • Phillips NC, Moras ML, Chedid L, Bernard JM (1985) Activation of alveolar macrophage tumoricidal activity and eradication of experimental pulmonary metastases by freeze-dried liposomes containing a new lipophilic muramyl dipeptide derviative. Cancer Res 45: 128–134

    PubMed  CAS  Google Scholar 

  • Phillips NC, Rioux J, Tsao M-S (1988) Activation of murine Kupffer cell tumoricidal activity by liposomes containing lipophilic muramyl dipeptide. Hepatology 8: 1046–1050

    PubMed  CAS  Google Scholar 

  • Poste G, Papahadjopoulos D (1976) Lipid vesicles as carriers for introducing materials into cultured cells. Influence of vesicle lipid on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci USA 73: 1603–1607

    Google Scholar 

  • Poste G, Kirsh R, Fogler WE, Fidler IJ (1979) Activation of tumoricidal properties in mouse macrophages by lymphokines encapsulated in liposomes. Cancer Res 39: 881–892

    PubMed  CAS  Google Scholar 

  • Poste G, Bucana C, Raz A, Bugelski P, Kirsh R, Fidler IJ (1982) Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res 42: 1412–1422

    PubMed  CAS  Google Scholar 

  • Poste G, Kirsh R, Koestler T (1984) The challenge of liposome targeting in vivo. In: Gregoriadis G (ed) Liposome technology, vol 3. CRC, Boca Raton, p 1

    Google Scholar 

  • Proffitt RT, Williams LE, Presant CA, Tin GW, Uliana JA Gamble RC, Baldeschwieler JD (1983) Tumor-imaging potential of liposomes loaded with mIn–NTA. Biodistribution in mice. J Nucl Med 24: 45–51

    Google Scholar 

  • Rahman A, Kessler A, More N, Sikic B, Rowden G, Woolley P, Schein P (1980) Liposomal protection of Adriamycin-induced cardiotoxicity in mice. Cancer Res 40: 1532–1637

    PubMed  CAS  Google Scholar 

  • Rahman YE, Cerny EA, Patel KR, Lau EH, Wright BJ (1982) Differential uptake of liposomes varying in size and lipid composition by parenchymal and Kupffer cells of mouse liver. Life Sci 31: 2061–2071

    PubMed  CAS  Google Scholar 

  • Rahman A, Carmichael D, Harris M, Roh JK (1986) Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Res 43: 2295–2299

    Google Scholar 

  • Rahman A, Roh JK, Treat J (1989) Preclinical and clinical pharmacology of doxorubicin entrapped in cardiolipin liposomes. In: Lopez-Berestein G, Fidler IJ (eds) Liposomes in the therapy of infectious diseases and cancer. Liss, New York, p 367

    Google Scholar 

  • Raz A, Bucana C, Fogler WE, Poste G, Fidler IJ (1981) Biochemical, morphological and ultrastructural studies on the uptake of liposomes by murine macrophages. Cancer Res 41: 487–494

    PubMed  CAS  Google Scholar 

  • Roerdink FH, Wisse E, Morselt HWM, van der Meulen J, Scherphof GL (1977) Cellular distribution of intravenously injected protein-containing liposomes in the rat liver. In: Wisse E, Knook DL (eds) Kupffer cells and other liver sinusoidal cells. Elsevier/North-Holland, Amsterdam, p 263

    Google Scholar 

  • Roerdink FH, Dijkstra J, Hartman G, Bolscher B, Scherphof G (1981) The involvement of parenchymal, Kupffer and endothelial liver cells in hepatic uptake of intravenously injected liposomes. Effects of lanthanum and godolinium salts. Biochim Biophys Acta 677: 79–89

    Google Scholar 

  • Roerdink FH, Regts J, van Leeuwen B, Scherphof GL (1984) Intrahepatic uptake and processing of intravenously injected small unilamellar vesicles in rats. Biochim Biophys Acta 770: 195–202

    PubMed  CAS  Google Scholar 

  • Roerdink FH, Regts J, Scherphof G (1986) Effect of lipid composition on the uptake and intracellular degradation of liposomes by Kupffer cells. In: Kirn A, Knook DL, Wisse E (eds) Cell of the hepatic sinusoid. Kupffer Cell Foundation, Rijswijk, p 125

    Google Scholar 

  • Roerdink FH, Regts J, Handel T, Sullivan SM, Baldeschwieler JD, Scherphof GL (1989) Effect of cholesterol on the uptake and intracellular degradation of liposomes by liver and spleen: a combined biochemical and x-ray perturbed angular correlation study. Biochim Biophys Acta 980: 234–240

    PubMed  CAS  Google Scholar 

  • Rowland RN, Woodley JF (1980) The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim Biophys Acta 620: 400–409

    PubMed  CAS  Google Scholar 

  • Rowland RN, Woodley JF (1981) The uptake of distearoylphosphatidylcholine/ cholesterol liposomes by rat intestinal sacs in vitro. Biochim Biophys Acta 673: 217–223

    PubMed  CAS  Google Scholar 

  • Rudra D, Myant N, Pflug J, Reichl D (1984) The distribution of cholesterol and apolipoprotein A-l between the lipoproteins in plasma and peripheral lymph from normal human subjects. Atherosclerosis 53: 297–308

    PubMed  CAS  Google Scholar 

  • Rustum YM (1983) Prodrugs: an approach to target-directed chemotherapy. In: Cheng Y-C, et al. (eds) Development of target-oriented anticancer drugs. Raven, New York, p 119

    Google Scholar 

  • Salord J, Schuber F (1988) In vitro drug delivery mediated by ecto-NAD+-glyco-hydrolase ligand-targeted liposomes. Biochim Biophys Acta 971: 197–206

    PubMed  CAS  Google Scholar 

  • Salord J, Tarnus C, Muller CD, Schuber F (1986) Targeting of liposomes by covalent coupling with ecto-NAD+-glycohydrolase ligands. Biochim Biophys Acta 886: 64–75

    PubMed  CAS  Google Scholar 

  • Scherphof G, Morselt H (1984) On the size dependent disintegration of samll unilamellar phosphatidylcholine vesicles in rat plasma. Evidence of complete loss of vesicle structure. Biochem J 221: 423–429

    Google Scholar 

  • Scherphof G, Roerdink F, Waite M, Parks J (1978) Disintegration of phosphatidylcholine liposomes as a result of interaction with high density lipoproteins. Biochim Biophys Acta 542: 296–307

    PubMed  CAS  Google Scholar 

  • Scherphof G, Morselt H, Regts J, Wilschut J (1979) The involvement of the lipid phase transition in the plasma-induced dissolution of multilamellar phosphatidylcholine vesicles. Biochim Biophys Acta 556: 196–207

    PubMed  CAS  Google Scholar 

  • Scherphof G, Roerdink F, Hoekstra D, Zborowski J, Wisse E (1980) Stability of liposomes in presence of blood constituents: consequences for uptake of liposomal lipid and entrapped compounds by rat liver cells. In: Gregoriads G, Allison AC (eds) Liposomes in biological systems. Wiley, Chichester, p 179

    Google Scholar 

  • Scherphof G, Roerdink F, Dijkstra J, Ellens H, de Zanger R, Wisse E (1983a) Uptake of liposomes by rat and mouse hepatocytes and Kupffer cells. Biol Cell 47: 47–58

    Google Scholar 

  • Scherphof G, van Leeuwen B, Wilschut J, Damen J (1983b) Exchange of phosphatidylcholine between small unilamellar liposomes and human high density lipoprotein exclusively involves the phospholipid in the outer monolayer of the liposomal membrane. Biochim Biophys Acta 732: 595–599

    PubMed  CAS  Google Scholar 

  • Schroit AJ, Fidler IJ (1982) Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide. Cancer Res 42: 161–167

    PubMed  CAS  Google Scholar 

  • Schwendener RA, Lagocki PA, Rahman YE (1984) The effects of charge and size on the interaction of unilamellar liposomes with macrophages. Biochim Biophys Acta 772: 93–101

    PubMed  CAS  Google Scholar 

  • Sculier JP, Coune A, Brassine C, Laduron C, Atassi G, Ruysschaert JM, Fruehling J (1986) Intravenous infusion of high doses of liposomes containing NCC 251635, a water-insoluble cytostatic agent. A pilot study with pharmacokinetic data. J Clin Oncol 4: 789–797

    Google Scholar 

  • Senior JH (1987) Fate and behaviour of liposomes in vivo: a review of controlling factors. CRC Crit Rev Ther Drug Carrier Syst 3: 123–193

    CAS  Google Scholar 

  • Senior J, Gregoriadis G (1982a) Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci 30: 2133–2136

    Google Scholar 

  • Senior J, Gregoriadis G (1982b) Is the half-life circulating liposomes determined by changes in their permeability? FFBS Lett 145: 109–114

    CAS  Google Scholar 

  • Senior J, Gregoriadis G (1984) Methodology in assessing liposomal stability in the presence of blood, clearance from the circulation of injected animals, and uptake by tissues. In: Gregoriadis G (ed) Liposome technology, vol 3. CRC, Boca Raton, p 263

    Google Scholar 

  • Senior J, Gregoriadis G, Mitropoulos KA (1983) Stability and clearance of small unilamellar liposomes. Studies with normal and lipoprotein–deficient mice. Biochim Biophys Acta 760: 111–118

    Google Scholar 

  • Senior J, Crawley JCW, Gregoriadis G (1985) Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochim Biophys Acta 839: 1–8

    PubMed  CAS  Google Scholar 

  • Souhami RL, Patel HM, Ryman BE (1981) The effect of reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes. Biochim Biophys Acta 674: 354–371

    PubMed  CAS  Google Scholar 

  • Spanjer H, Scherphof G (1983) Targeting of lactosylceramide-containing liposomes to hepatocytes in vivo. Biochim Biophs Acta 734: 40–47

    CAS  Google Scholar 

  • Spanjer H, Morselt H, Scherphof G (1984) Lactosylceramide-induced stimulation of liposome uptake by Kupffer cells in vivo. Biochim Biophys Acta 774: 49–55

    PubMed  CAS  Google Scholar 

  • Spanjer HH, Scherphof GL, van Berkel TJC, Kempen HJM (1985) The effect of a water-soluble tris-galactoside terminated cholesterol derivative on the in vivo fate of small unilamellar vesicles in rats. Biochim Biophys Acta 816: 396–402

    PubMed  CAS  Google Scholar 

  • Spanjer HH, van Galen M, Roerdink FH, Regts J, Scherphof GL (1986) Intrahepatic distribution os small unilamellar liposomes as a function of liposomal lipid composition. Biochim Biophys Acta 863: 224–230

    PubMed  CAS  Google Scholar 

  • Stein O, Halperin G, Leitersdorf E, Olivecrona T, Stein Y (1984b) Lipoprotein lipase mediated uptake of non-degradable ether analogues of phosphatidylcholine and cholesteryl ester by cultured cells. Biochim Biophys Acta 795: 47–59

    PubMed  CAS  Google Scholar 

  • Stein Y, Halperin G, Leitersdorf E, Dabach Y, Hollander G, Stein O (1984a) Metabolism of liposomes prepared from a labelled ether analog of 1,2-dioleoyl-M-glycero-3-phosphocholine in the rat. Biochim Biophys Acta 793: 354–364

    PubMed  CAS  Google Scholar 

  • Stevenson RW, Patel HM, Parsons JA, Ryman BE (1982) Prolonged hypoglycemic effect in diabetic dogs due to subcutaneous administration of insulin in liposomes. Diabetes 31: 506–511

    PubMed  CAS  Google Scholar 

  • Storm G, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJA (1987) Influence of lipid composition on the antitumor activity exerted by doxorubicin– containing liposomes in a rat solid tumor model. Cancer Res 47: 3366–3372

    CAS  Google Scholar 

  • Storm G, Nassander UH, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJA (1989) In: Lopez-Berestein G, Fidler IJ (eds) Liposomes in the therapy of infectious diseases and cancer. Liss, New York, p 105

    Google Scholar 

  • Straubinger RM, Hong K, Friend DS, Papahadjopoulos D (1983) Endocytosis of liposomes and intracellular fate of encapsualted molecules: encounter with a low-pH compartment after internalization in coated vesicles. Cell 43: 1069–1079

    Google Scholar 

  • Stukart MJ, Rijnsent A, Roose (1987) Induction of tumoricidal activity in isolated rat liver macrophages by liposomes containing recombinant rat gamma interferon supplemented with lipopolysaccharide or muramyl dipeptide. Cancer Res 47: 3880–3885

    PubMed  CAS  Google Scholar 

  • Sunamoto J, Iwamoto K (1986) Protein-coated and polysaccharide-coated liposomes as drug carriers. CRC Crit Rev Ther Drug Carrier Syst 2: 117–136

    CAS  Google Scholar 

  • Sunamoto J, Goto M, Iida T, Hara K, Saito A, Tomonaga A (1984) Unexpected tissue distribution of liposomes coated with amylopectin derivatives and successful use in the treatment of experimental legionnaires disease. In: Gregoriadis G, Poste G, Senior J, Trouet (eds) Receptor-mediated targeting of drugs. Plenum, New York, p 359

    Google Scholar 

  • Szoka FC, Mayhew E (1983) Alteration of liposome disposition in vivo by bilayer situated carbohydrates. Biochem Biophys Res Commun 110: 140–146

    PubMed  CAS  Google Scholar 

  • Szoka FG, Jacobson K, Derzko Z, Papahadjopoulos D (1980) Fluorescence studies on the mechanism of liposome-cell interactions in vitro. Biochim Biophys Acta 600: 1–18

    PubMed  CAS  Google Scholar 

  • Szoka FC, Magnusson K-E, Wojcieszyn J, Hou Y, Derzko Z, Jacobson K (1981) Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells. Proc Natal Acad Sci USA 78: 1685–1689

    CAS  Google Scholar 

  • Takada M, Yuzuriha T, Katayama K, Iwamoto K, Sunamoto J (1984) Increased lung uptake of liposomes coated with polysaccharides. Biochim Biophys Acta 802: 237–243

    PubMed  CAS  Google Scholar 

  • Thombre PS, Deodhar SD (1984) Inhibition of liver metastases in murine colon adenocarcinoma by liposomes containing human C-reactive protein or crude lymphokine. Cancer Immunol Immunother 16: 145–150

    PubMed  CAS  Google Scholar 

  • Tomonaga A, Ueda Y, Hirota M, Saito A, Hara K, Goto M, Sunamoto J (1985) The uptake of polysaccharide-coated liposomes by alveolar macrophages. In: Leichard S, Kojima M (eds) Macrophage biology. Liss, New York, p 15

    Google Scholar 

  • Torchilin VP (1987) Liposomes as targetable drug carriers. CRC Crit Rev Ther Drug Carrier Syst 2: 65–115

    Google Scholar 

  • Torchilin VP, Goldmacher VS, Smirnov VN (1978) Comparative studies on covalent and non-covalent immobilization of protein molecules on the surface of liposomes. Biochem Biophys Res Commun 85: 983–990

    PubMed  CAS  Google Scholar 

  • Torchilin VP, Klibanov Al, Smirnov VN (1982) Phosphatidylinositol may serve as the hydrophobic anchor for immobilization of proteins on liposome surface. FEBS Lett 138: 117–120

    CAS  Google Scholar 

  • Treat J, Greenspan AR, Rahman A (1989) Liposome-encapsulated doxorubicin. Preliminary results of phase I and phase II trials. In: Lopez-Berestein G, Fidler IJ (eds) Liposomes in the therapy of infectious diseases and cancer. Liss, New York, p 353

    Google Scholar 

  • Tremblay C, Barza M, Fiore C, Szoka F (1984) Efficacy of liposome-intercalated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother 26: 170–173

    PubMed  CAS  Google Scholar 

  • Turner A, Kirby C, Senior J, Gregoriadis G (1983) Fate of cholesterol-rich liposomes after subcutaneous injection into rats. Biochim Biophys Acta 760: 119–125

    Google Scholar 

  • Van Borssum Waalkes M, Scherphof GL (1990) Liposome–incorporated 3′,5′-O-dipalmitoyl-5-fluoro-2′-deoxyuridine as a slow-release antitumor drug depot in rat liver macrophages. Select Cancer Ther 6: 15–22

    Google Scholar 

  • Van Hoesel QG, Steerenberg PA, Crommelin DJA, van Dijk A, van Oort W, Klein S, Doux JMC, de Wildt DJ, Hillen FC (1984) Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes in the LOU/M Wsi rat. Cancer Res 44: 3698–3705

    Google Scholar 

  • Van Oss CJ, Gillman CF, Bronson PM, Border JR (1974a) Phagocytosis–inhibiting properties of human serum alpha-1 acid glycoprotein. Immunol Commun 3: 321–328

    PubMed  Google Scholar 

  • Van Oss CJ, Gillman CF, Bronson PM, Border JR (1974b) Opsonic properties of human serum alpha–2 HS glycoprotein. Immunol Commun 3: 329–326

    PubMed  Google Scholar 

  • Van Renswoude AJBM, Westenberg P, Scherphof GL (1979) In vitro interaction of Zajdela ascites hepatoma cells with lipid vesicles. Biochim Biophys Acta 558: 22–40

    PubMed  Google Scholar 

  • Van Renswoude J, Bridges KR, Harford JB, Klausner RD (1982) Receptor–mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci USA 79: 6186–6190

    PubMed  Google Scholar 

  • Van Rooijen N, van Nieuwmegen R (1984) Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study. Cell Tissue Res 238: 355–358

    PubMed  Google Scholar 

  • Van Rooijen N, van Nieuwmegen R, Kamperdijk EWA (1985) Elimination of phagocytic cells after intravenous injection of liposome-encapsulated dichloromethylene phosphonate. Ultrastructural aspects of elimination of marginal zone macrophages. Virchows Arch [Cell Pathol] 49: 375–383

    Google Scholar 

  • Weinstein JN, Leserman LD (1984) Liposomes as drug carriers in cancer chemotherapy. Pharmacol Ther 24: 207–233

    PubMed  CAS  Google Scholar 

  • Weinstein JN, Blumenthal R, Sharrow SO, Henkart P (1978) Antibody-mediated targeting of liposomes: binding to lymphocytes does not ensure incorporation of vesicle contents into the cells. Biochim Biophys Acta 509: 272

    PubMed  CAS  Google Scholar 

  • Weissman G, Korchak H, Finkelstein M, Smolen J, Hoffstein S (1978) Uptake of enzyme-laden liposomes by animal cells in vitro and in vivo. Ann NY Acad Sci 308: 235–249

    Google Scholar 

  • Wisse E, de Zanger R, Jacobs R (1982) Lobular gradients in endothelial fenestrae and sinusoidal diameter favour centrolobular exchange processes: a scanning EM study. In: Knook DL, Wisse E (eds) Sinusoidal liver cells. Elsevier, Amsterdam, p 61

    Google Scholar 

  • Wisse E, de Zanger RB, Jacobs R, McCuskey RS (1983) Scanning electron micro-scope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scanning electron Microsc 3: 1441–1452

    Google Scholar 

  • Woodley JF (1986) Liposomes for oral administration of drugs. Crit Rev Ther Drug Carrier Syst 2: 1–18

    Google Scholar 

  • Wright S, Huang L (1989) Antibody–directed liposomes as drug-delivery vehicles. Adv Drug Delivery Rev 3: 343–389

    Google Scholar 

  • Wu MS, Robbins JC, Bugianesi RL, Ponpipom MM, Shen TY (1981) Modified in vivo behaviour of liposomes containing synthetic glycolipids. Biochim Biophys Acta 674: 19–29

    PubMed  CAS  Google Scholar 

  • Zborowski J, Roerdink FH, Scherphof GL (1977) Leakage of sucrose from phos-phatidylcholine liposomes induced by interaction with serum albumin. Biochim Biophys Acta 497: 183–191

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherphof, G.L. (1991). In Vivo Behavior of Liposomes: Interactions with the Mononuclear Phagocyte System and Implications for Drug Targeting. In: Juliano, R.L. (eds) Targeted Drug Delivery. Handbook of Experimental Pharmacology, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75862-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75862-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75864-5

  • Online ISBN: 978-3-642-75862-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics