Skip to main content

Chemical Delivery Systems

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 100))

Abstract

One of the most sought after yet elusive goals of the medicinal chemist is the development of site-or organ-targeted drug delivery systems. The realization of Ehrlich’s “magic bullet” would be a boon to therapeutic intervention in many disease states. The reason for this, of course, is selectivity. If a systemically or orally administered agent concentrates in its pathophysiologically relevant site, not only would the efficiency of the drug be enhanced but also the toxicity of the material may well be mitigated. This latter point is a consequence of attenuating non-target site drug levels. Lowering the toxicity of a drug is of equal importance to enhancing potency in terms of optimizing the therapeutic index, i.e., the ratio of the median effective and toxic doses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad S (1979) Cardiopulmonary effects of timolol eye drops. Lancet 2: 1028

    PubMed  CAS  Google Scholar 

  • Anderson WR, Simpkins JW, Brewster ME, Bodor N (1987a) Evidence for the reestablishment of copulatory behavior in castrated male rats with a brain-enhanced estradiol-chemical delivery system. Pharmacol Biochem Behav 27: 265–271

    PubMed  CAS  Google Scholar 

  • Anderson WR, Simpkins JW, Woodard PA, Winwood D, Stern WC, Bodor N (1987b) Anxiolytic activity of a brain delivery system for GAB A. Psychopharmacology (Berlin) 92: 157–163

    CAS  Google Scholar 

  • Anderson WR, Simpkins JW, Brewster ME, Bodor N (1988a) Evidence for suppression of serum LH without elevation of serum estradiol or prolactin with a brain-enhanced redox delivery system for estradiol. Life Sci 42: 1493–1502

    PubMed  CAS  Google Scholar 

  • Anderson WR, Simpkins JW, Brewster ME, Bodor N (1988b) Effects of a brain-enhanced chemical delivery system for estradiol on body weight and serum hormones in middle-aged rats. Endocrinol Res 14: 131–148

    CAS  Google Scholar 

  • Balis F, Pizzo P, Murphy R, Eddy J, Jarosinski P, Fallon J, Broder S, Poplock D (1989) The pharmacokinetics of zidovudine administered by continuous infusion in children. Ann Intern Med 110: 279–285

    PubMed  CAS  Google Scholar 

  • Bancroft J, Tennent G, Loucas K, Cuss J (1974) The control of deviant sexual behaviour by drugs: behavioral changes with oestrogens and antiandrogens. Br J Psychiatry 125: 310–315

    PubMed  CAS  Google Scholar 

  • Barraclough CA, Wise PM (1982) The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle-stimulating hormone secretion. Endocr Rev 3: 91–119

    PubMed  CAS  Google Scholar 

  • Beyer C, Morali G, Naftolin F, Larsson K, Perez-Palacio G (1976) Effect of some antiestrogens and aromatase inhibitors on androgen induced sexual behavior in castrate male rats. Horm Behav 7: 353–362

    PubMed  CAS  Google Scholar 

  • Blum R, Liao S, Good S, deMiranda P (1988) Pharmacokinetics and bioavailability of zidovudine in humans. Am J Med [Suppl 2A] 85: 189–194

    CAS  Google Scholar 

  • Bodor N (1981) Novel approaches to prodrug design. Drugs Future 6: 165–182

    Google Scholar 

  • Bodor N (1987) Redox drug delivery for targeting drugs to the brain. Ann NY Acad Sci 507: 289–306

    PubMed  CAS  Google Scholar 

  • Bodor N (1989) Designing safer ophthalmic drugs. In: vander Goot H, Domany G, Pallos L, Timmerman H (eds) Trends in medicinal chemistry ‘88. Elsevier, Amsterdam, pp 145–164

    Google Scholar 

  • Bodor N, Brewster M (1983) Problems of delivery of drugs to the brain. Pharmacol Ther 19: 337–386

    CAS  Google Scholar 

  • Bodor N, Farag H (1983) Improved delivery through biological membranes. XIII. Brain-specific delivery of dopamine with a dihydropyridine-pyridinium salt type redox delivery system. J Med Chem 26: 528–534

    Google Scholar 

  • Bodor N, Kaminski J (1987) Prodrugs and site-specific chemical delivery systems. Annu Rep Med Chem 22: 303–313

    CAS  Google Scholar 

  • Bodor N, Prokai L (1990) Site and stereospecific drug-delivery by sequential enzymatic bioactivation. Pharm Res 7: 723–725

    PubMed  CAS  Google Scholar 

  • Bodor N, Simpkins J (1983) Redox delivery system for brain-specific, sustained release of dopamine. Science 221: 65–67

    PubMed  CAS  Google Scholar 

  • Bodor N, Visor G (1984a) Formation and adrenaline in the iris-ciliary body from adrenalone diesters. Exp Eye Res 38: 621–626

    PubMed  CAS  Google Scholar 

  • Bodor N, Visor G (1984b) A site-specific chemical delivery system as a short-acting mydriatic agent. Pharm Res 1: 168–173

    Google Scholar 

  • Bodor N, Kaminski JJ, Roller R (1978) Improved delivery through biological membranes. VI. Potent sympathomimetic adrenalone derivatives. Int J Pharm 1: 189–196

    Google Scholar 

  • Bodor N, Farag H, Brewster M (1981) Site-specific, sustained release of drugs to the brain. Science 214: 1370–1372

    PubMed  CAS  Google Scholar 

  • Bodor N, McCornack J, Brewster, ME (1987) Improved delivery through biological membranes. XXII. Synthesis and distribution of brain-selective estrogen delivery systems. Int J Pharm 35: 47–59

    Google Scholar 

  • Bodor N, El-Koussi A, Kano M, Nakamura T (1988) Improved delivery through biological membranes. Design, synthesis and pharmacological activity of a novel chemical delivery system for (3-adrenergic blocking agents. J Med Chem 31: 100–106

    PubMed  CAS  Google Scholar 

  • Brewster ME (1990) Brain-targeted delivery of estrogens. Rev Neurosci 12: 9

    Google Scholar 

  • Brewster ME, Estes KS, Bodor N (1987a) Improved delivery through biological membranes. XXXII. Synthesis and biological activity of brain-targeted delivery systems for various estradiol derivatives. J Med Chem 31: 244–249

    Google Scholar 

  • Brewster ME, Venkatraghavan V, Shek E, Bodor N (1987b) Facile, one-step preparation of trigonellinate esters. Synthetic Commun 17: 451–455

    CAS  Google Scholar 

  • Brewster ME, Estes K, Loftsson T, Perchalski R, Derendorf H, Mullersman G, Bodor N (1988a) Improved delivery through biological membranes. XXXI. Solubilization and stabilization of an estradiol chemical delivery system by modified p-cyclodextrins. J Pharm Sci 77: 981–985

    Google Scholar 

  • Brewster ME, Estes KS, Perchalski R, Bodor N (1988b) A dihydropyridine conjugate which generates high and sustained levels of the corresponding pyridinium salt in the brain does not exhibit neurotoxicity in cynomolgus monkeys. Neurosci Lett 87: 277–282

    PubMed  CAS  Google Scholar 

  • Brewster M, Little R, Venkatraghavan V, Bodor N (1988c) Brain-enhanced delivery of antiviral agents ( Abstr ). Antiviral Res 9: 127

    Google Scholar 

  • Brewster ME, Estes KS, Bodor N (1990a) An intravenous toxicity study of 2-hydroxypropyl-(3-cyclodextrin, a useful drug solubilizer, in rats and monkeys. Int J Pharm 59: 231–243

    CAS  Google Scholar 

  • Brewster ME, Simpkins JW, Bodor N (1990b) Brain-targeted delivery of estrogens. Rev Neurosci 2: 241–285

    PubMed  CAS  Google Scholar 

  • Buhdgaard H (ed) (1985) Design of prodrugs. Elsevier, Amsterdam

    Google Scholar 

  • Canonico P, Kende M, Gabrielsen B (1988) Carrier-mediated delivery of antiviral agents. Adv Virus Res 35: 271–312

    PubMed  CAS  Google Scholar 

  • Caterall WC (1988) Tryptophan and bladder cancer. Biol Psychiatry 24: 733–734

    Google Scholar 

  • Christensen LW, Clemens LG (1974) Intrahypothalamic implants of testosterone or estradiol and resumption of masculine sexual behavior in long-term castrated male rats. Endocrinology 95: 984–990

    PubMed  CAS  Google Scholar 

  • Conner CS (1984) Ribavirin. Drug Intell Clin Pharm 18:137–138 Czaja J A (1983) Body weight and growth rates throughout the guinea pig pregnancy: evidence for modulation by endogenous estrogens. Physiol Behav 30: 197–201

    Google Scholar 

  • Elion G, Furman P, Fyfe J, deMiranda P, Beauchamp L, Schaeffer H (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci USA 74: 5716–5720

    PubMed  CAS  Google Scholar 

  • El–Koussi A, Bodor N (1987) Improved delivery through biological membranes. XXV. Enhanced and sustained delivery of trifluorothymidine to the brain using a dihydropyridine-pyridinium salt type redox delivery system. Drug Design Delivery 1: 275–283

    Google Scholar 

  • El–Koussi A, Bodor N (1989) Formation of propranolol in the iris-ciliary body from its propranolol-ketoxime precursor-a potential antiglaucoma drug. Int J Pharm 53: 189–194

    Google Scholar 

  • Estes KS, Brewster ME, Simpkins JW, Bodor N (1987) A novel redox system for CNS-directed delivery of estradiol causes sustained LH suppression in the castrate rat. Life Sci 40: 1327–1334

    PubMed  CAS  Google Scholar 

  • Estes KS, Brewster ME, Bodor N (1988) A redox system for brain targeted estrogen delivery causes chronic body weight decrease in rats. Life Sci 42: 1077–1084

    PubMed  CAS  Google Scholar 

  • Feltakamp H, Meurer KH, Godchardt F (1984) Tryptophan-induced lowering of blood pressure and changes of serotonin uptake by platelets in patients with essential hypertension. Klin Wochenschr 62: 1115–1119

    Google Scholar 

  • Fenstermacher JD (1985) Current models of blood-brain transfer. Trends Neurol Sci 8: 449–452

    Google Scholar 

  • Fonnum F (1978) Comment on localization of neurotransmitters in the basal ganglia. In: Fonnum F (ed) Amino acids as chemical transmitters. Plenum, New York, pp 143–153

    Google Scholar 

  • Fotherby K (1985) Oral contraceptives, lipids and cardiovascular disease contraception 31: 367–394

    CAS  Google Scholar 

  • Fraunfelder FT, Barker AF (1985) Respiratory effects of timolol. N Engl J Med 311: 1441

    Google Scholar 

  • Fregly MJ, Fater DC (1986) Prevention of DOCA-induced hypertension in rats by chronic treatment with tryptophan. Clin Exp Pharmacol Physiol 13: 767–776

    PubMed  CAS  Google Scholar 

  • Fregly MJ, Lockley, OE, vanderVoort J, Sumner C, Henley W (1987) Chronic dietary administration of tryptophan prevents the development of deoxycorticosterone acetate salt induced hypertension in rats. Can J Physiol Pharmacol 65: 753–764

    PubMed  CAS  Google Scholar 

  • Fregly MJ, Lockley OE, Cade JR (1988) Effect of chronic dietary treatment with L-tryptophan on the development of renal hypertension in rats. Pharmacology 36: 91–100

    PubMed  CAS  Google Scholar 

  • Fuller RW, Holland DR, Yen TT, Bemis KG, Stamm N (1979) Antihypertensive effects of fluoxetine and L-5-hydroxytryptophan in rats. Life Sci 25: 1237–1242

    PubMed  CAS  Google Scholar 

  • Gallo J, Boubinot F, Doshi D, Etse J, Bhandti V, Schinazi R, Chu CK (1989) Evaluation of brain targeting of anti-HIV nucleosides delivered via dihydropyridine prodrugs ( Abstr ). Pharm Res 6: S161

    Google Scholar 

  • Gogu SR, Aggarwal SK, Rangan SR, Agrawal KC (1989) A prodrug of zidovudine with enhanced efficacy against human immunodeficiency virus. Biochem Biophys Res Commun 160: 656–661

    PubMed  CAS  Google Scholar 

  • Gorrod J (1980) Potential hazards of the prodrug approach. Chem Ind 11: 458–462

    Google Scholar 

  • Greig NH (1987) Optimizing drug delivery to brain tumors. Cancer Treat Rev 14: 1–28

    PubMed  CAS  Google Scholar 

  • Greig NH, Momma S, Sweeney DJ, Smith QR, Rapoport SI (1987) Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system. Cancer Res 47: 1571–1576

    PubMed  CAS  Google Scholar 

  • Henderson SR, Baker G, Fink G (1977) Oestradiol-17(3 and pituitary responsiveness to luteinizing hormone releasing factor in the rat. J Endocrinol 73: 441–453

    PubMed  CAS  Google Scholar 

  • Hoek JB, Rydstrom J (1988) Physiological roles of nicotinamide nucleotide trans-hydrogenases. Biochem J 254: 1–10

    PubMed  CAS  Google Scholar 

  • Howe R, Shanks RG (1966) Optical isomers of propranolol. Nature 210: 1336 - 1338

    PubMed  CAS  Google Scholar 

  • Howes J, Bodor N, Brewster ME, Estes K, Eve M (1988) A pilot study with PR-63 in post-menopausal volunteers ( Abstr ). J Clin Pharmacol 28: 951

    Google Scholar 

  • Huggins J, Robins R, Canonico P (1984) Synergistic antiviral effects of ribavirin and the C-nucleoside analogs of tiazofurin and selenazofurin against togaviruses, bunyaviruses and arenaviruses. Antimicrob Agents Chemother 26: 476–480

    PubMed  CAS  Google Scholar 

  • Huppert LC (1987) Hormone replacement therapy: benefits, risks, doses. Med Clin North Am 71: 23–29

    PubMed  CAS  Google Scholar 

  • Hurst BS, Rock JA (1989) Endometriosis: pathophysiology, diagnosis and treatment. Obstet Gynecol Surv 44: 297–304

    PubMed  CAS  Google Scholar 

  • Ito A, Schanberg SM (1972) Central nervous system mechanism responsible for blood pressure elevation induced by p-chlorophenylalanine. J Pharmacol Exp Ther 181: 65–74

    PubMed  CAS  Google Scholar 

  • Jankovic J (1988) Parkinson’s disease: recent advances in therapy. South Med J 81: 1021–1027

    PubMed  CAS  Google Scholar 

  • Janocko L, Larner J, Hochberg RH (1984) The interaction of C-17 esters of estradiol with the estrogen receptor. Endocrinology 114: 1180–1186

    PubMed  CAS  Google Scholar 

  • Joyce JN (1983) Multiple dopamine receptors and behavior. Neurosci Biobehav Rev 7: 227–256

    PubMed  CAS  Google Scholar 

  • Judd H (1987) Efficacy of transdermal estradiol. Am J Obstet Gynecol 156: 1326–1331

    PubMed  CAS  Google Scholar 

  • Kalra SP, Kalra PS (1980) Modulation of hypothalamic luteinizing hormone-releasing hormone levels by intracranial and subcutaneous implants of gonadal steroids incastrated rats: effects of androgen and estrogen antagonists. Endocrinology 106: 390–397

    PubMed  CAS  Google Scholar 

  • Kalra SP, Kalra PS (1983) Neural regulation of luteinizing hormone secretion in the rat. Endocr Rev 4: 311–351

    PubMed  CAS  Google Scholar 

  • Kaplan NM (1978) Cardiovascular complications of oral contraceptives. Annu Rev Med 29: 31–40

    PubMed  CAS  Google Scholar 

  • Kawashima D, Levy A, Spector S (1976) Stereospecific radioimmunoassay for propranolol isomers. J Pharmacol Exp Ther 196: 517–523

    PubMed  CAS  Google Scholar 

  • Klecker R, Collins J, Yarchoan R, Thomas R, Jenkins J, Broder S, Myer C (1987) Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther 41: 407–412

    PubMed  Google Scholar 

  • Landau T, Zucker I (1976) Estrogenic regulation of body weight in female rats. Horm Behav 7: 29–39

    PubMed  CAS  Google Scholar 

  • Lauritzen C, vanKeep PA (1978) Potential beneficial effects of estrogen substitution in the post-menopause - a review. Front Horm Res 5: 1–25

    Google Scholar 

  • Levin E (1977) Are the terms blood-brain barrier and brain capillary permeability synonymous. Exp Eye Res 25: 191–199

    PubMed  CAS  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficients and molecular weight to rat brain capillary permeability. J Med Chem 23: 682–684

    PubMed  CAS  Google Scholar 

  • Libertun C, Orias R, McCann SM (1974) Biphasic effect of estrogen on the sensitivity of the pituitary to luteinizing hormone-releasing factor ( LRF ). Endocrinology 94: 1094–1100

    Google Scholar 

  • Little R, Bailey D, Brewster M, Estes K, Clemmons R, Saab A, Bodor N (1990) Improved delivery through biological membranes. XXXIII. Brain-enhanced delivery of azidothymidine. J Biopharm Sci 1: 1–16

    Google Scholar 

  • MacLusky NJ, Phillip A, Hurlburt C, Naftolin F (1984) Estrogen metabolism in neuroendocrine structures. In: Celotti F, Naftolin F, Martini L (eds) Metabolism of hormonal steroids in the neuroendocrine structures. Raven, New York, pp 103–116

    Google Scholar 

  • Maggi A, Perez J (1985) Role of female gonadal hormones in the CNS: clinical and experimental aspects. Life Sci 37: 893–906

    PubMed  CAS  Google Scholar 

  • Martin JB, Gusella JF (1986) Huntington’s disease: pathogenesis and management. N Engl J Med 315: 1267–1276

    PubMed  CAS  Google Scholar 

  • Matsuyama K, Yamashita C, Noda A, Goto S, Nodo H, Ichimaru Y, Gomita Y (1984) Evaluation of isonicotinoyl-y-aminobutyric acid ( GABA) and nicotinoyl-GABA as prodrugs of GABA. Chem Pharm Bull (Tokyo) 32: 4089–4095

    Google Scholar 

  • McCormick J, King I, Webb P, Scribner C, Craven R, Johnson K, Elliott L, Belmont-Williams R (1986) Lassa fever: effective therapy with ribavirin. N Engl J Med 314: 20–26

    PubMed  CAS  Google Scholar 

  • McEwen BS (1981) Neural gonadal steroid action. Science 211: 1303–1311

    PubMed  CAS  Google Scholar 

  • Mekki QA, Warrington SJ, Turner P (1984) Ocular and cardiovascular effects of timolol and pindolol eyedrops in normal volunteers. Br J Clin Pharmacol 17: 632–633

    Google Scholar 

  • Mullersman G, Derendorf H, Brewster ME, Estes KS, Bodor N (1988) High performance liquid chromatographic assay of a central nervous system ( CNS)- directed estradiol chemical delivery system and its application after intravenous administration in rats. Pharm Res 5: 172–177

    Google Scholar 

  • Nelson W, Shetty H (1986) Stereoselective oxidative metabolism of propranolol in the microsomal fraction from rat and human liver. Use of deuterium labeling and pseudoracemic mixtures. Drug Metab Dispos 14: 506–508

    Google Scholar 

  • Neuwelt EA (ed) (1989) Implications of the blood-brain barrier and its manipulations. Plenum, New York

    Google Scholar 

  • Palomino E, Kessel D, Horwitz J (1989) A dihydropyridine carrier system for sustained delivery of 2′,3′-dideoxynucleosides to the brain. J Med Chem 32: 622–625

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1981) Transport of nutrients and hormones through the blood-brain barrier. Diabetologia 20: 246–254

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1985) Strategies for drug delivery through the blood-brain barrier. In: Borchardt R, Repta A; Stella VJ (eds) Directed drug delivery. Humana, Clifton, pp 83–96

    Google Scholar 

  • Pardridge WM, Connor JD, Crawford IL (1975) Permeability changes in the blood-brain barrier: causes and consequences. CRC Crit Rev Toxicol 3: 159–199

    PubMed  CAS  Google Scholar 

  • Pfaff DW (1970) Nature of sex hormone effects on rat sex behavior: specificity of effect and individual patterns of response. J Comp Physiol Psychol 73: 349–358

    PubMed  CAS  Google Scholar 

  • Pfaff DW, Keiner M (1973) Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J Comp Neurol 151: 121–158

    PubMed  CAS  Google Scholar 

  • Pop E, Anderson W, Prokai-Tatrai K, Brewster M, Fregly M, Bodor N (1990) Antihypertensive activity of redox derivatives of tryptophan. J Med Chem 33: 2063–2065

    Google Scholar 

  • Rand K, Bodor N, El-Koussi A, Raad J, Miyake A, Houck H, Gildersleeve N (1986) Potential treatment of herpes simplex virus encephalitis by brain-specific delivery of trifluorothymidine using a dihydropyridine-pyridinium salt type redox delivery system. J Med Virol 20: 1–8

    PubMed  CAS  Google Scholar 

  • Rapoport SI (1976) The blood–brain barrier in physiology and medicine. Raven, New York

    Google Scholar 

  • Rapoport SI, Klee WA, Pattigrew KD, Ohno K (1980) Entry of opioid peptides into the central nervous system. Science 207: 84–86

    PubMed  CAS  Google Scholar 

  • Reese B, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxides. J Cell Biol 34: 207–217

    PubMed  CAS  Google Scholar 

  • Richards R, Tattersfield E (1985) Brochial P–adrenoreceptor blockade following eye drops of timolol and its isomer L-714, 465 in normal subjects. Br J Clin Pharmacol 20: 459–462

    PubMed  CAS  Google Scholar 

  • Rodriguez W, Parrott R (1987) Ribavirin aerosol treatment of serious respiratory syncytial virus infection in infants. Infect Dis Clin North Am 1: 425–439

    PubMed  CAS  Google Scholar 

  • Roland L (ed) (1984) Marritt’s textbook of neurology. Lea and Febiger, Philadelphia, p 526

    Google Scholar 

  • Roos BE, Steg G (1964) The effect of 3,4-dihydroxyphenylalanine and 5- hydroxytryptophan on rigidity and tremor induced by reserpine, chlorpromazine and phenoxybenzamine.Xife Sci 3: 351–360

    CAS  Google Scholar 

  • Rydstrom J (1977) Energy–linked nicotinamide nucleotide transhydrogenases. Biochim Biophys Acta 463: 155–184

    PubMed  CAS  Google Scholar 

  • Saito K (1976) Immunochemical studies of GAD and GABA-T. In: Roberts E, Chase TN, Tower DB (eds) GAB A in nervous system function. Raven, New York, pp 103–111

    Google Scholar 

  • Sar M (1984) Estradiol is concentrated in tyrosine hydroxylase containing neurons of the hypothalamus. Science 223: 938–940

    PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE (1981) Central noradrenergic neurons concentrate 3H-oestradiol. Nature 289: 500–502

    PubMed  CAS  Google Scholar 

  • Sarkar DK, Chippa SA, Fink G, Friedman HM (1976) Gonadotropin-releasing hormone surge in proestrus rats. Nature 264: 461–463

    PubMed  CAS  Google Scholar 

  • Sarkar DK, Friedman SJ, Yen SSC, Frautschy SA (1989) Chronic inhibition of hypothalamic–pituitary-ovarian axis and body weight gain by brain–directed delivery of estradiol-17p in female rats. Neuroendocrinology 50: 204–210

    PubMed  CAS  Google Scholar 

  • Schoene RB, Martin TR, Chavan NB, French DL (1981) Timolol induced bron-chospasm in asthmatic bronchitis. JAMA 245: 1460–1461

    PubMed  CAS  Google Scholar 

  • Schoene RB, Ward R, Abuan T, Beasley CH (1984) Effect of topical betaxolol, timolol and placebo on pulmonary function in asthmatic bronchitis. Am J Ophthalmol 97: 86–92

    PubMed  CAS  Google Scholar 

  • Sidwell R, Robins R, Hillyard I (1979) Ribavirin: an antiviral agent. Pharmacol Ther 6: 123–146

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Bodor N, Enz A (1985) Direct evidence for brain–specific release of dopamine from a redox delivery system. J Pharm Sci 74: 1033–1036

    PubMed  CAS  Google Scholar 

  • Simpkins J, McCornack J, Estes KS, Brewster ME, Shek E, Bodor N (1986) Sustained brain specific delivery of estradiol causes long–term suppression of luteinizing hormone secretion. J Med Chem 29: 1809–1812

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Anderson WR, Dawson R, Seth A, Brewster M, Estes K, Bodor N (1988) Chronic weight loss in lean and obese rats with a brain-enhanced chemical delivery system for estradiol. Physiol Behav 44: 573–580

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Anderson WR, Dawson R, Bodor N (1989) Effect of a brain-enhanced chemical delivery system for estradiol on body weight and food intake in intact and ovariectomized rats. Pharm Res 6: 592–600

    PubMed  CAS  Google Scholar 

  • Steingold KA, Lauter L, Chetkowski RJ, Defazio J, Matt DW, Meldrum DR, et al. (1985) Treatment of hot flashes with transdermal estradiol administration. J Clin Endocrinol Metab 61: 627–632

    PubMed  CAS  Google Scholar 

  • Stella VJ (1975) Prodrugs: an overview and definition. In: Higuchi T, Stella VJ (eds) Prodrugs as novel drug delivery systems. American Chemical Society, Washington, pp 1–115

    Google Scholar 

  • Stella VJ, Himmelstein KJ (1980) Prodrugs and site-specific drug delivery. J Med Chem 23: 1275–1282

    PubMed  CAS  Google Scholar 

  • Suckling AJ, Rumsby MG, Bradbury MW (eds ) (1986) The blood-brain barrier in health and disease.

    Google Scholar 

  • VCH, Chichester Sved A, van Itallie CM, Fernstrom JD (1982) Studies on the antihypertensive action of L–tryptophan. J Pharmacol Exp Ther 221: 329–333

    Google Scholar 

  • Terasaki T, Pardridge W (1988) Restricted transport of 3’-azido-3’-deoxythymidine and dideoxynucleosides through the blood–brain barrier. J Infect Dis 158: 630–632

    PubMed  CAS  Google Scholar 

  • Torrence P, Kinjo J, Lesiak K, Balzarini J, DeClercq E (1988) AIDS dementia: synthesis and properties of a derivative of 3’-azido-3’-deoxythymidine ( AZT) that may become “locked” in the central nervous system. FFBS Lett 234: 134–140

    Google Scholar 

  • Upton V (1984) Therapeutic considerations in the management of the climacteric. J Reprod Med 29: 71–79

    PubMed  CAS  Google Scholar 

  • Venkatraghavan V, Shek E, Perchalski R, Bodor N (1986) Brain-specific chemical delivery systems for acyclovir ( Abstr ). Pharmacologist 28: 145

    Google Scholar 

  • Verjans HL, Eik-Nes KB (1976) Serum LH and FSH levels following intravenous injection of a gonadotropin releasing principle in normal and gonadectomized adult male rats with estradiol-17P or 5a-dihydrotestosterone. Acta Endocrinol (Copenh) 83: 493–505

    CAS  Google Scholar 

  • Wade GN (1972) Gonadal hormones and behavior regulation of body weight. Physiol Behav 8: 523–534

    PubMed  CAS  Google Scholar 

  • Walle T, Walle U, Wilson MJ, Fagan TC, Gaffney T (1984) Stereoselective ring oxidation of propranolol in man. Br J Clin Pharmacol 18: 741–748

    PubMed  CAS  Google Scholar 

  • Wolf WA, Kuhn DM (1984a) Antihypertensive effects of L-tryptophan are not mediated by brain serotonin. Brain Res 295: 356–359

    PubMed  CAS  Google Scholar 

  • Wolf WA, Kuhn DM (1984b) Effect of L-tryptophan on blood pressure in normotensive and hypertensive rats. J Pharmacol Exp Ther 230: 324–329

    PubMed  CAS  Google Scholar 

  • Woodard P, Winwood D, Brewster ME, Estes K, Bodor N (1990) Improved delivery through biological membranes. XXI. Brain-targeted anti-convulsive agents. Drug Design Delivery 6: 15–28

    Google Scholar 

  • Yarchoan R, Berg G, Brouwers R, Fischl M, Spitzer A, et al. (1987) Response of human immunodeficiency-virus-associated neurological disease to 3′-azido-3′- deoxythymidine. Lancet 1: 132–135

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bodor, N., Brewster, M.E. (1991). Chemical Delivery Systems. In: Juliano, R.L. (eds) Targeted Drug Delivery. Handbook of Experimental Pharmacology, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75862-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75862-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75864-5

  • Online ISBN: 978-3-642-75862-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics