Skip to main content

A Second Breakthrough: New Methods for the Formation of the Peptide Bond

  • Chapter
The World of Peptides

Abstract

To some extent it is surprising that in the first half of this century so little attention was paid to methods of coupling. A reasonable explanation for this neglect and delay could be the effectiveness of the acid azides of Curtius and the acid chlorides of E. Fischer in the formation of the peptide bond. Most of the desired bonds could be secured without fail and for a long period the principal obstacle in the development of peptide synthesis remained the lack of suitable, readily removable blocking groups. When this barrier was finally removed in the 1930s (cf. Chap. 3) the incentive needed for intensive research toward improved coupling methods was still missing. The elucidation of the structure of excitingly interesting peptides, such as insulin, oxytocin or angiotensin, all within a few years in the early 1950s, provided the necessary stimulus for studies in the methodology of synthesis. Yet, even before these tangible objectives became apparent a certain inspiration was offered by the explosive growth of knowledge in biochemistry at about the same time. The reactive intermediates recognized in biological processes involving acylation revealed a degree of sophistication not seen in the methods generally used in the organic laboratory. Hence biomimetic procedures became both attractive and challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Chantrenne, Hippuric acid formation from glycine and dibenzoyl phosphate. Nature, 160, 603–604 (1947); Un modèle de synthèse peptidique. Propriétés due benzoylphosphate de phenyl. Biochim. Biophys. Acta 2: 286-293 (1948); A new method of peptide synthesis. Nature 164: 576-577 (1949); Peptide synthesis via glycyl phosphate. Biochim. Biophys. Acta 4: 482-492 (1950).

    Article  PubMed  CAS  Google Scholar 

  2. J.C. Sheehan, V.S. Frank, Peptide synthesis using energy-rich phosphorylated amino acid derivatives. J. Amer. Chem. Soc. 72: 1312–1316 (1950).

    Article  CAS  Google Scholar 

  3. F. Lynen, E. Reichert, Zur chemischen Struktur der “activierten Essigsäure”. Angew. Chem. 63: 47–48 (1951); F. Lynen, ibid. 63: 490 (1951).

    Article  CAS  Google Scholar 

  4. Th. Wieland, W. Schäfer, E. Bokelmann, Über Peptidsynthesen V. Über eine bequeme Darstellungsweise von Acylthiophenolen und ihre Verwendung zu Amid-und Peptid-Synthesen. Liebigs Ann. Chem. 573: 99–104 (1951).

    Article  CAS  Google Scholar 

  5. Th. Wieland, Sulfur in biomimetic peptide synthesis. In: Roots of Biochemistry, Fritz Lipmann-Meeting, Berlin 1987; H. Kleinkauf, H.v. Döhren, L. Jaenicke eds. De Gruyter Berlin, New York 1988, p. 213-223.

    Google Scholar 

  6. Th. Wieland, W. Kern, R. Sehring, Über Anhydride von acylierten Aminosäuren. Liebigs Ann. Chem. 569: 117–122 (1950); Th. Wieland, R. Sehring, Eine neue Peptid-Synthese. ibid. 569:122-129 (1950).

    Article  CAS  Google Scholar 

  7. K. Kraut, Fr. Hartmann, Über das Glycin. Liebigs Ann. Chem. 133: 99–108 (1865).

    Article  Google Scholar 

  8. Th. Wieland, H. Bernhard, Über Peptid-Synthesen. 3. Mitteilung. Die Verwendung von Anhydriden aus N-acylierten Aminosäuren und Derivaten anorganischer Säuren. Liebigs Ann. Chem. 572:190–194 (1951).

    Article  CAS  Google Scholar 

  9. R.A. Boissonnas, Une nouvelle methode de synthèse peptidique. Helv. Chim. Acta 34: 874–879 (1951).

    Article  CAS  Google Scholar 

  10. J.R. Vaughan Jr., R.L. Osato. The preparation of peptides using mixed carbonic-carboxylic acid anhydrides. J. Amer. Chem. Soc. 74: 676–678 (1952).

    Article  CAS  Google Scholar 

  11. J. Meienhofer, The mixed carbonic anhydride method. In the Peptides, Vol.1 (E. Gross, J. Meienhofer, eds.) Academic Press, New York 1979, pp. 241–314.

    Google Scholar 

  12. G.W. Kenner, Synthesis of peptides. Chem. Ind. 1951,15; G.W. Kenner, R.J. Stedman. Peptides. Part I. The synthesis of peptides through anhydrides of sulfuric acid. J. Chem. Soc. 1952, 2067-2076.

    Google Scholar 

  13. G.W. Anderson, A.D. Welcher, R.W. Young, Diethyl chlorophosphite as reagent for peptide synthesis. J. Amer. Chem. Soc. 73: 501–502 (1951).

    Article  CAS  Google Scholar 

  14. A.R. Emery, V. Gold, Quantitative studies of the reactivities of mixed carboxylic anhydrides. Part. I. The composition of the acylation products in the reaction between acetic chloroacetic anhydrides and primary aromatic amines. J. Chem. Soc. 1950:1443-1447.

    Google Scholar 

  15. J.R. Vaughan Jr, R.L. Osato, Preparation of peptides using mixed carboxylic acid anhydrides. J. Am. Chem. Soc. 73: 5553–5555 (1951).

    Article  CAS  Google Scholar 

  16. M. Zaoral, Amino acids and peptides XXXVI. Pivaloyl chloride as a reagent in the mixed anhydride synthesis of peptides. Coll. Czechoslov. Chem. Comm. 27: 1273–1277 (1962).

    CAS  Google Scholar 

  17. N.F. Albertson, Synthesis of peptides with mixed anhydrides. Org. Reactions 12: 157–355 (1962).

    CAS  Google Scholar 

  18. E. Pacsu, E.J. Wilson Jr., Poly condensation of certain peptide esters I. Poly glycine esters. J. Org. Chem. 7:117–125(1942).

    Article  CAS  Google Scholar 

  19. H. Brockmann, H. Musso, Versuche zur Synthese von Polypeptiden durch Kondensation von Aminosäure-und Peptidestern Chem. Ber. 87: 581–592 (1954).

    Article  CAS  Google Scholar 

  20. R. Schwyzer, B. Iselin, M. Feurer, 8. Über aktivierte Ester der Hippursäure und ihre Umsetzungen mit Benzylamin. Helv. Chim. Acta 38: 69–79 (1955); R. Schwyzer, M. Feurer, B. Iselin, H. Kägi, 9. Über aktivierte Ester II. Synthese aktivierter Ester von Aminosäure Derivaten, ibid. 38: 80-83 (1955); R. Schwyzer, M. Feurer, B. Iselin, 10 Über aktivierte Ester III. Umsetzungen activierter Ester von Aminosäure-und Peptid-Derivaten mit Aminen und Aminosäureestern. Helv. Chim. Acta. 38: 83-89 (1955).

    Article  CAS  Google Scholar 

  21. M. Bodanszky, Synthesis of peptides by aminolysis of nitrophenyl esters, Nature 175: 685–686 (1955).

    Article  PubMed  CAS  Google Scholar 

  22. M. Gordon, J.G. Miller, A.R. Day, Effect of structure on reactivity in ammonolysis of esters with special references to electron release effects of alkyl and aryl groups. J. Amer. Chem. Soc. 70:1946–1953 (1948).

    Article  CAS  Google Scholar 

  23. J.A. Farrington, G.W. Kenner, J.M. Turner, Preparation of p-nitrophenyl thiolesters and their application to peptide synthesis. Chem. Ind. (London) 1955, 601–602; J.A. Farrington, P.J. Hextall, G.W. Kenner, J.M. Turner, Peptides. Part VII. The preparation and use of p-nitrophenyl thiolesters. J. Chem. Soc. 1957, 1407-1413.

    Google Scholar 

  24. M. Bodanszky, Active esters in peptide synthesis in The Peptides, Vol. I. (E. Gross, J. Meinhofer, eds.) Academic Press, New York 1979, pp. 105–196.

    Google Scholar 

  25. J. Pless, R.A. Boissonnas, Über die Geschwindigkeit der Aminolyse von verschiedenen aktivierten, N-geschützten α-Aminosäure-p-nitrophenylestern, insbesondere 2,4,5-trichlorphenylestern. Helv. Chim. Acta. 46: 1609–1625 (1963).

    Article  Google Scholar 

  26. J. Kovács, L. Kisfaludy, M.Q. Ceprini, On the optical purity of peptide active esters prepared by N,N′-dicyclohexylcarbodiimide and “complexes” of N,N′-dicyclohexylcarbodiimide-penta-chlorophenol and N,N′-dicyclohexylcarbodiimide and pentafluorophenol. J. Amer. Chem. Soc. 89:183–184(1967).

    Article  Google Scholar 

  27. G.H.L. Nefkens, G.I. Tesser, A Novel activated ester in peptide synthesis. J. Amer. Chem. Soc. 83:1263 (1961).

    Article  CAS  Google Scholar 

  28. G.W. Anderson, J.E. Zimmerman, N-Hydroxysuccinimide esters in peptide synthesis. J. Amer. Chem. Soc. 86:1839–1842 (1964).

    Article  CAS  Google Scholar 

  29. S.M. Beaumont, B.O. Handford, G.T. Young, The use of esters of NN-dialkylhydroxylamines in peptide synthesis and as selective acylating agents, J. Chem. Soc. Chem. Commun. 1965, 53-54; B.O. Handford, J.H. Jones, G.T. Young, T.F.N. Johnson, The use of esters of 1-hydroxypiperidine and other NN-dialkylhydroxylamines in peptide synthesis and as selective acylating agents. J. Chem. Soc. 1965, 6814-6827.

    Google Scholar 

  30. H.D. Jakubke, A. Baumert, Vergleichende Studien über den Peptidknüpfungsschritt unter Verwendung verschiedener aktivierter Ester am Beispiel eines Modellpeptids. J. Prakt. Chem. 316: 241–248 (1974).

    Article  CAS  Google Scholar 

  31. K. Lloyd, G.T. Young, The use of acylamino acid-esters of 2-mercaptopyridine in peptide synthesis. J. Chem. Soc. Chem. Commun. 1968, 1400-1401; Amino acids and peptides. Part XXXIV. Anchimerically assisted coupling reactions: the use of 2-pyridyl thiol esters. J. Chem. Soc. 1971, 2890-2896; A.S. Dutta, J.S. Morley, Polypeptides. Part XII. The preparation of 2-pyridyl esters and their use in peptide synthesis. J. Chem. Soc. C. 1971, 2896-2900.

    Google Scholar 

  32. W. König, R. Geiger, Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxybenzotriazolen. Chem. Ber. 103: 788–798 (1970).

    Article  PubMed  Google Scholar 

  33. D.F. Elliott, D.W. Russel, Peptide synthesis employing p-nitrophenyl esters prepared with the aid of N,N′-dieyclohexylcarbodiimide. Biochem. J. 66:49 P. (1957); M. Rothe, F.W. Kunitz, Synthese cyclischer Oligopeptide der α-Aminocapronsäure. Konstitutionsaufklärung der ring-förmigen Bestandteile von Polycaprolaktam. Liebigs Ann. Chem. 609: 88-102 (1957).

    Google Scholar 

  34. M. Fridkin, Polymeric reagents in peptide synthesis in The Peptides vol. 2 (E. Gross, J. Meienhofer eds.) Academic Press New York 1980, pp. 333–363.

    Google Scholar 

  35. Th. Wieland, G. Schneider, N-Acylimidazole als energiereiche Acylverbindungen. Liebigs Ann. Chem. 580:159–168 (1953); R.H. Mazur, Acceleration of p-nitrophenyl ester peptide synthesis by imidazole. J. Org. Chem. 28: 2498 (1963).

    Article  CAS  Google Scholar 

  36. H.C. Beyermann, W. Maassen van den Brink, Use of bifunctional catalysts in peptide and other syntheses. Proc. Chem. Soc. (Lond) 1963, 266;.

    Google Scholar 

  37. H.C. Beyermann, W. Maasen van den Brink, F. Weygand, A. Prox, W. König, L. Schmidhammer, E. Nintz, Racemization and bifunctional catalysts in peptide synthesis. Rec. Trav. Chim. Pays. Bas. 84: 213–231 (1965)

    Article  Google Scholar 

  38. W. König, R. Geiger, Racemisierung bei Peptidsynthesen, Chem. Ber. 103: 788–798; 2024-2034 (1970).

    Article  PubMed  Google Scholar 

  39. W. König, R. Geiger, N-Hydroxyverbindungen als Katalysatoren für die Aminolyse aktivierter Ester Chem. Ber. 106: 3626–3635 (1973).

    Article  Google Scholar 

  40. J.F. Arens, The chemistry of acetylenic ethers XIII. Acetylenic ethers as reagents for the preparation of amides. Rev. Trav. Chim. Pays. Bas. 74: 769–770 (1955).

    Article  CAS  Google Scholar 

  41. J.C. Sheehan, G.P. Hess, A new method of forming peptide bonds. J. Amer. Chem. Soc. 77:1067–1068 (1955).

    Article  CAS  Google Scholar 

  42. H.G. Khorana, Peptides. Part III. Selective degradation for the carboxyl end. The use of carbodiimides. J. Chem. Soc. 1952, 2081-2088; The chemistry of carbodiimides. Chem. Reviews 53:145-166 (1953).

    Google Scholar 

  43. H.G. Khorana, The use of dicyclohexylcarbodiimide in the synthesis of peptides. Chem. Ind. (London) 1955, 1087-1088.

    Google Scholar 

  44. R.B. Woodward, R.A. Olofson, The reaction of isoxazolium salts with bases. J. Amer. Chem. Soc. 83:1007–1009 (1961); R.B. Woodward, R.A. Olofson, H. Mayer, A. new synthesis of peptides, J. Amer. Chem. Soc. 83:1010-1012 (1961).

    Article  CAS  Google Scholar 

  45. L. Claisen, Über α-Methyl-isoxazol. Ber. Dtsch. Chem. Ges. 42: 59–68 (1909); O. Mumm, G. Münchenmeyer, Überführung des Oxymethylenacetophenons in Benzoylbrenztraubensäure und einige neue Derivate. Ber. Dtsch. Chem. Ges. 43: 3335-3345 (1910).

    Google Scholar 

  46. H.A. Staab, Reaktionsfahige heterocyclische Diamide der Kohlensäure. Liebigs Ann. Chem. 609: 75–83 (1957).

    Article  CAS  Google Scholar 

  47. B. Belleau, G. Malek, A new convenient reagent for peptide synthesis. J. Amer. Chem. Soc. 90: 1651–1652 (1968).

    Article  CAS  Google Scholar 

  48. A.J. Bates, I.J. Galpin, A. Hallett, D. Hudson, G.W. Kenner, G.W. Ramage, R.C. Sheppard, A new reagent for peptide synthesis: &#03BC;-oxo-bis-[tris-(dimethylamino)phosphonium]-bistetrafluoroborate. Helv. Chim. Acta. 58: 688–696 (1975).

    Article  PubMed  CAS  Google Scholar 

  49. B. Castro, J.R. Dormoy, G. Evin, C. Selve, Reactifs de couplage peptidique IV. (1)-L-hexafluorophosphate de berizotriazolyl-N-oxitris-dimethylamino phosphonium (B.O.P). Tetrahedron Letters 1975, 1219-1222.

    Google Scholar 

  50. W. König, R. Geiger, Eine neue Methode zur Synthese von Peptiden. Aktivierung der Carboxyl Gruppe mit Dicyclohexylcarbodiimid und 3-Hydroxy-4-oxo-3.4-dihydro-1.2.3-benzotriazin. Chem. Ber. 103: 2034–2040 (1970).

    Article  PubMed  Google Scholar 

  51. M. Bodanszky, J. Martinez, Side reactions in peptide synthesis. The Peptides, vol. 5 (E. Gross, J. Meienhofer, eds.) Acad. Press, New York 1983 pp. 111–216.

    Google Scholar 

  52. D.W. Clayton, J.H. Farrington, G.W. Kenner, J.M. Turner, Peptides. Part VI. Further studies of the synthesis of peptides through anhydrides of sulfuric acid. J Chem Soc 1957, 1398-1407.

    Google Scholar 

  53. G.W. Anderson, F.M. Callahan, Racemization by the dicyclohexylcarbodiimide method of peptide synthesis. J. Amer. Chem. Soc. 80: 2902–2903 (1958).

    Article  CAS  Google Scholar 

  54. N.A. Smart, G.T. Young, M.W. Williams, Amino acids and peptides. Part XV. Racemization during peptide synthesis. J. Chem. Soc. 1960, 3902-3912; M.W. Williams, G.T. Young, Amino acids and peptides. Part XVI. Further studies of racemization during peptide synthesis. J Chem Soc 1963, 881-889.

    Google Scholar 

  55. D.S. Kemp, Racemization in peptide synthesis. The Peptides, vol. 1. (E. Gross, J. Meienhofer eds.) Acad. Press New York 1979 pp. 315–383.

    Google Scholar 

  56. M. Bodanszky, Stepwise synthesis of peptides by the nitrophenylester method. Ann N Y Acad Sci 88:655–664(1960).

    Article  CAS  Google Scholar 

  57. F. Weygand, D. Hoffmann, E. Wünsch, Synthesis of peptides with dicyclohexylcarbodiimide by addition of N-hydroxysuccinimide. Z. Naturforschung 21 b: 426 (1966).

    Google Scholar 

  58. M Itoh, Racemization suppression by the use of ethyl hydroximino-2-cyanoacetate in Chemistry and Biology of Peptides (J. Meienhofer, ed.) Ann Arbor Science Pub. Ann Arbor, Michigan 1972 pp. 365–367.

    Google Scholar 

  59. T. Mukaiyama, R. Matsueda, M. Ueki, The oxidation-reduction condensation. The Peptides, vol.2 (E. Gross, J. Meienhofer eds.) Acad. Press New York 1979 pp. 383–416.

    Google Scholar 

  60. O. Hollitzer, A. Seewald, W. Steglich, 4,6-Diphenylthieno [3,4d] [1,3]dioxol-2-one 5,5-dioxide. A novel activating agent in peptide synthesis. Angew. Chem. 15: 444–445 (1976).

    Article  CAS  Google Scholar 

  61. I. Ugi, The four component synthesis. The Peptides vol. 2 (E. Gross, J. Meienhofer, eds.) Acad. Press New York 1979, pp. 365–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Spinger-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wieland, T., Bodanszky, M. (1991). A Second Breakthrough: New Methods for the Formation of the Peptide Bond. In: The World of Peptides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75850-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75850-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75852-2

  • Online ISBN: 978-3-642-75850-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics